

# 伝搬現象の数理

## Propagation phenomena and related topics

城西大学紀尾井町キャンパス

Feb. 9th. 2026

10:00 - 11:30

俣野 博 (明治大学) Hiroshi Matano (Meiji University)

一般のメトリックグラフにおける波面伝播

Front propagation on a general metric graph

13:20 - 14:10

下條 昌彦 (東京都立大学) Masahiko Shimojo (Tokyo Metropolitan University)

相対エントロピー汎関数による反応拡散方程式系の進行波の安定性

Convergence to Traveling Waves for Reaction-Diffusion Systems Using Lyapunov-Type Arguments

14:20 - 15:10

石井 宙志 (北海道大学) Hiroshi Ishii (Hokkaido University)

非整数階時間微分を持つFisher-KPP型方程式の進行フロント解について

Propagating front solutions in a time-fractional Fisher-KPP type equation

15:20 - 16:10

関坂(山本) 宏子 (理研) Hiroko Sekisaka-Yamamoto (RIKEN)

非局所発展方程式に関する反応拡散近似

Reaction-diffusion approximations for nonlocal evolution equations

16:20 - 17:10

森 龍之介 (明治大学) Ryunosuke Mori (Meiji University)

空間周期的な帯状領域における駆動項付き曲率流の伝播とブロッキング

Propagation and blocking of curvature flow with driving force in spatially periodic stripe domains

Feb. 10th. 2026

10:00 - 11:30

Jong-Shenq Guo (Tamkang University)

Spreading dynamics for a 2-species competition system in a shifting environment

13:20 - 14:10

小川 知之 (明治大学) Toshi Ogawa (Meiji University)

周期的非均質性を持つ媒質における双安定反応拡散方程式の定常フロント解

Stationary front solutions in a bistable RD equation with periodic heterogeneity

14:20 - 15:10

関坂 歩幹 (明治大学) Ayuki Sekisaka (Meiji University)

シリンドー領域上の反応拡散系の進行波のStability indexとEvans関数

Stability index and the infinite dimensional Evans function for traveling Waves of reaction-diffusion systems on cylindrical domains

15:20 - 16:10

三村 与士文 (日本大学) Yoshifumi Mimura (Nihon University)

非勾配流に対する変分的な解の構成法と応用

Variational Construction of Solutions for Non-Gradient Flows and Its Applications

16:20 - 17:10

伊藤 涼 (神奈川大学) Ryo Ito (Kanagawa University)

反応拡散方程式の非有界および有界な進行波解の存在と速度公式

Existence of bounded and unbounded traveling wave solutions for reaction-diffusion equations

俣野 博 (明治大学) Hiroshi Matano (Meiji University)  
一般のメトリックグラフにおける波面伝播  
Front propagation on a general metric graph

メトリックグラフ上の反応拡散方程式に対する関心が昨今高まっている。メトリックグラフとは、各エッジが長さの尺度を持つ有向グラフのことである。本講演では、メトリックグラフ上の双安定型反応拡散方程式に対して、解の波面伝播を一般的な視点から論じる。

本講演で扱うメトリックグラフは、任意形状の有界な有限グラフ  $D$  (センターグラフ) と、そこから無限遠方に伸びる有限個のエッジ (外部経路) から構成される。ある外部経路に沿って無限遠方から近づく解波面が、センターグラフ  $D$  を通り過ぎて別の外部経路に侵入することができるかどうか (「伝播」か「ブロッキング」か) を論じるのが目的である。

本講演では、まず最初にセンターグラフ  $D$  の構造に依存しない一般論を確立し、次にセンターグラフ  $D$  を微小揺動あるいは大変形したさいに、伝播やブロッキングの性質が維持されるかどうかを論じる。最後に、一般論を幾つかの特殊な形状のグラフに適用して、伝播とブロッキングのいずれが起こるかを考察する。

Reaction-diffusion equations on metric graphs are receiving growing attention these days. Roughly speaking, a metric graph is a directed graph whose edges have a length scale, and can thus be identified with an interval on the real line.

In this lecture, I will talk about a bistable reaction-diffusion equation on a metric graph that consists of a general bounded finite metric graph  $D$  (which we call the "center graph") and a finite number of "outer paths" that stretch from  $D$  toward infinity. Our goal is to investigate the behavior of solution fronts that come from infinity along a given outer path and to discuss whether or not the front can propagate into other outer paths. For that purpose, we introduce a precise notion of "propagation" and "blocking".

We first focus on general principles that hold regardless of the structure of  $D$ , such as the dichotomy and transient principles. Next we consider perturbations of the graph  $D$  while fixing the outer paths, and discuss whether or not the propagation and blocking properties are preserved under perturbations. We then apply our general principles to several specific metric graphs.

In this talk, we discuss the convergence of solutions of reaction-diffusion systems toward traveling wave solutions. By employing Lyapunov-type methods, we establish that, when the initial data is sufficiently close to a wave profile at infinity, the corresponding solution converges to this traveling wave as time tends to infinity. As an application, we analyze predator-prey systems and demonstrate the stability of traveling waves, thereby providing new insights into the dynamics of non-cooperative systems. This work is joint with Jong-Shenq Guo and Arnaud Ducrot.

下條 昌彦 (東京都立大学)<sup>\*1</sup>

Arnaud Ducrot (Université Le Havre Normandie)

次の反応拡散系の進行波の安定性を論じる。

$$\partial_t u_i(x, t) = d_i \partial_x^2 u_i(x, t) + u_i(x, t) g_i(\mathbf{u}(x, t)), \quad x \in \mathbb{R}, t > 0, \quad i = 1, \dots, m. \quad (\text{P})$$

ここで  $\mathbf{u} := (u_1, \dots, u_m)$ ,  $d_i > 0$  であり,  $g_i : \mathbb{R}^m \rightarrow \mathbb{R}$  は適当な部分集合  $\Sigma$  上で滑らかな関数とする。

反応拡散系 (P) の異なる定数平衡点  $E^\pm$  を結ぶ進行波解  $\{c, \Phi\}$  とは,  $\Phi := (\phi_1, \dots, \phi_m)$  に対して,  $u_i(x, t) = \phi_i(x - ct)$  と表せる解のことである. ただし,  $\Phi(-\infty) = E^-, \Phi(\infty) = E^+$  が成り立つとする. 反応拡散系における進行波は, 侵入現象の時空間的挙動を記述する上で重要な役割を果たす. 反応拡散系の進行波の存在は広範に研究されている. 近年では, 単独方程式や, 順序構造が利用できる協調系のみならず, 比較原理に基づく順序構造を用いることができない, 捕食者-被食者系や感染症モデルに対しても進行波が構成されている ([7, 8, 3, 6, 2, 10]).

本研究では, 捕食者-被食者系や感染症モデルにおける進行波の大域的漸近安定性を導く適用範囲の広い一般的枠組みを構築した.

**Theorem 1 (Stability theorem[4])** 反応拡散系 (P) は, 進行波解の近傍に有界な矩形型の正不変集合  $\Sigma \subset (0, \infty)^m$  を持つと仮定する. つまり, 初期データ  $\mathbf{u}^0 = (u_1^0, \dots, u_m^0) \in BUC(\mathbb{R})$  が, 任意の  $x \in \mathbb{R}$  に対して  $\mathbf{u}^0(x) \in \Sigma$  を満たすならば, 解  $\mathbf{u}$  は任意の  $x \in \mathbb{R}$  と  $t > 0$  に対して,  $\mathbf{u}(x, t) \in \Sigma$  を満たすとする. さらに, ある  $\{\sigma_i\}_{i=1, \dots, m} \subset (0, \infty)^m$  があって, 以下の条件が成り立つとする.

$$\sum_{i=1}^m \sigma_i (u_i - v_i) \{g_i(\mathbf{u}) - g_i(\mathbf{v})\} \leq 0, \quad \mathbf{u}, \mathbf{v} \in \Sigma.$$

また,  $R := \max_{1 \leq i \leq m} \{\|g_i(\Phi)\|_{L^\infty(\mathbb{R})}\}$ ,  $d_{\max} := \max_{1 \leq i \leq m} \{d_i\}$  に対して

$$c > 2\sqrt{d_{\max} R}, \quad \mu \in \left( \frac{c - \sqrt{c^2 - 4d_{\max} R}}{2d_{\max}}, \frac{c + \sqrt{c^2 - 4d_{\max} R}}{2d_{\max}} \right)$$

とし, ある  $\alpha_0 > 0$  に対して  $\phi_i(x) \geq O(e^{-\alpha_0|x|})$  とする. ある  $\alpha^+ > \mu + \alpha_0$  と  $\alpha^- < -\alpha_0 - \mu$  が存在して,  $x \mapsto (u_i^0(x) - \phi_i(x)) e^{-\alpha^\pm x} \in H^1(\mathbb{R})$  が満たされるとする. このとき  $x \in \mathbb{R}$  に関して局所一様に  $\mathbf{u}(x + ct, t) \rightarrow \Phi(x)$  as  $t \rightarrow \infty$ .

Theorem 1 を適用すれば, 例えば [3, 6, 2, 10] のような捕食者-被食者系や感染症モデルに対して, 重み付き空間での進行波の漸近安定性を導くことができる.

This work was supported by KAKENHI (24K06817).

Keywords: predator-prey system, traveling wave, convergence.

<sup>\*1</sup>e-mail: shimojo@tmu.ac.jp

web: <https://www.masahiko-shimojo.com/>

論文 [5] では拡散係数  $\{d_i\}_{i=1}^m$  がすべて等しい場合に,  $c \geq \sqrt{2d_{\max}R}$  の範囲で, 進行波への収束が証明されている. 一方, 本講演で紹介する Theorem 1 は, 速度に関して等号が成立する  $c = \sqrt{2d_{\max}R}$  の場合には適用できない. しかしながら, Theorem 1 は「拡散係数がすべて等しい」という人為的な仮定を取り除くことは成功している. 我々は, 拡散係数がすべて等しい反応拡散方程式系にのみ適用可能な, 進行波の安定性に関する相対エントロピー関数の一般論 ([5]) を拡張し, Theorem 1 を証明した. なお, 通常の捕食者-被食者系や感染症モデルにおいて, 捕食者(感染者)の拡散係数が被食者(非感染者)の拡散係数よりも大きい場合には,  $\sqrt{2d_{\max}R}$  は進行波が存在するための最小の速度に一致する.

**Remark 1** スペクトル解析による進行波の局所的な安定性解析については、例えば [9, 11, 1, 12] が参考になる. また, 順序保存性を有する協調系に関しては強力な一般論があることが知られている. 本研究で扱っている, 捕食者-被食者系や感染症モデルでは, 順序構造が保存されないため, 進行波の漸近安定性の解析には未解明な点が多い.

## References

- [1] J. Alexander, R. Gardner, C. Jones, *A topological invariant arising in the stability analysis of travelling waves*, J. Reine Angew. Math. 410 (1990), 167-212.
- [2] Y.-S. Chen, J.-S. Guo, M. Shimojo, *Recent developments on a singular predator-prey model*, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1797-1809.
- [3] Y.-Y. Chen, J.-S. Guo, C.-H. Yao, *Traveling wave solutions for a continuous and discrete diffusive predator-prey model*, J. Math. Anal. Appl. 445 (2017), 212-239.
- [4] A. Ducrot, M. Shimojo, *Convergence to traveling waves for reaction-diffusion systems using Lyapunov type arguments*, To appear in J. Dynamics and Differential Equations.
- [5] J.-S. Guo, M. Shimojo, *Convergence to traveling waves in reaction-diffusion systems with equal diffusivities*, J. Differential Equations, 375 (2023), 156-171.
- [6] J.-S. Guo, K.-I. Nakamura, T. Ogiwara and C.-C. Wu, *Traveling wave solutions for a predator-prey system with two predators and one prey*, Nonlinear Analysis: Real World Applications 54 (2020), Art. 103111.
- [7] Y.L. Huang, G. Lin, *Traveling wave solutions in a diffusive system with two preys and one predator*, J. Math. Anal. Appl., 418 (2014), 163-184.
- [8] J.-J. Lin, W. Wang, C. Zhao, T.-H. Yang, *Global dynamics and traveling wave solutions of two-predators-one-prey models*, Discrete Contin. Dynam. Syst. Ser. B, 20 (2015), 1135-1154.
- [9] D.H. Sattinger, *Weighted norms for the stability of travelling waves*, J. Differential Equations, 25 (1977), 179-201.
- [10] M. Shimojo, Y. Tanaka, *Global asymptotic stability of endemic equilibria and stability of traveling waves for a diffusive SIR epidemic model with logistic growth*, Journal of Elliptic and Parabolic Eq. 2024: doi.org/10.1007/s41808-024-00262-y
- [11] E. Yanagida, K. Maginu, *Stability of double-pulse solutions in nerve axon equations*, SIAM J. Appl. Math. 49 (1989), 1158-1173.
- [12] H. Zhang, H. Izuhara, Y. Wu, *Asymptotic stability of two types of traveling waves for some predator-prey models*, Discrete Contin. Dynam. Syst. Ser. B, 26 (2021), 2323-2342.

石井 宙志 (北海道大学) Hiroshi Ishii (Hokkaido University)  
非整数階時間微分を持つ Fisher-KPP 型方程式の進行フロント解について  
Propagating front solutions in a time-fractional Fisher-KPP type equation

本講演では非整数階時間微分として Caputo 微分を持つ Fisher-KPP 型方程式を扱い、フロント解の長時間挙動について議論する。まず、モデル方程式の背景を紹介したのち、数値計算結果とそこから予想される解の性質について説明する。さらに、解の長時間挙動を特徴づけるために、解が漸近的に進行波解に近づくと仮定し、そのような進行波解がどのように存在しうるかについて解析して得られた結果を紹介する。最後に、これらの解析結果がモデルの理解にどのように有用であるかを説明する。

In this talk, we address the Fisher-KPP equation with a Caputo derivative as the time derivative and discuss the long-time behavior of the front solution. After briefly reviewing the background of the model, we present numerical results and discuss the expected properties of the solution. To further characterize the long-time behavior, we assume that the solution asymptotically behaves like a traveling wave and present the results of our analysis of potential traveling wave solutions to which it may converge. Finally, we explain how these results contribute to a deeper understanding of the model.

関坂 (山本) 宏子 (理研) Hiroko Sekisaka-Yamamoto (RIKEN)  
非局所発展方程式に関する反応拡散近似  
Reaction-diffusion approximations for nonlocal evolution equations

本研究では、任意の可積分な積分核を含む非局所発展方程式の初期値問題を考える。非局所発展方程式は、単独の方程式でありながら、反応拡散系に現れるようなパターンを形成することから、生物学と数学の両方から注目されている。本研究では、非局所発展方程式の解が、移流項を含む反応拡散系の解の第1成分により近似できることを示す。また積分核が非対称性な場合には、wavetrain が発生することについても紹介する。本研究は、明治大学の関坂歩幹氏との共同研究に基づくものである。

In this study, we consider the initial value problem for nonlocal evolution equations with arbitrary integrable kernels. Although a nonlocal evolution equation is a single equation, it can generate spatial patterns similar to those observed in reaction-diffusion systems, and has therefore attracted considerable attention from both biology and mathematics. We show that solutions of the nonlocal evolution equations can be approximated by the first component of reaction-diffusion systems with advection terms. In addition, when the integral kernel is asymmetric, we demonstrate that wavetrains can arise. This work is based on joint research with Ayuki Sekisaka of Meiji University.

森 龍之介 (明治大学 ) Ryunosuke Mori (Meiji University)

空間周期的な帯状領域における駆動項付き曲率流の伝播とブロッキング

Propagation and blocking of curvature flow with driving force in spatially periodic stripe domains

本講演では、空間的に周期構造をもつ帯状領域における駆動項付き曲率流の長時間挙動を扱う。このような領域では、解の長時間挙動は伝播とブロッキングの2つの振る舞いに分けられる。講演では、領域の形状がこれらの振る舞いにどのように影響するかを明らかにする。

I study the long-time behavior of curvature flows with driving force in spatially periodic stripe domains. In such domains, solutions exhibit two distinct behaviors: propagation and blocking. In this talk, I clarify how geometric features of the domain determine which of these behaviors occurs.

Jong-Shenq Guo (Tamkang University)

Spreading dynamics for a 2-species competition system in a shifting environment

We study the spreading dynamics for two-species diffusive competition systems in shifting environments caused by climate changes. Our main goal is a complete overview of conditions for extinction and persistence of each species. We will be interested in the case of a strong-weak competition, that is when one of the competitors would eventually drive the other to extinction in the absence of climate change. Depending on the pace of climate change, but also on whether the strong competitor is faster or slower, we will uncover wildly different outcomes in the asymptotic behavior of solutions. This talk is based on a joint work with Arnaud Ducrot and Thomas Giletti.

小川 知之 (明治大学) Toshi Ogawa (Meiji University)

周期的非均質性を持つ媒質における双安定反応拡散方程式の定常フロント解

Stationary front solutions in a bistable RD equation with periodic heterogeneity

神保・森田により星型メトリックグラフ上の南雲方程式のフロント波のブロック現象が研究されているが、量子グラフの分野ではネックレス型メトリックグラフの研究が盛んになりつつある。そこで本講演では、メトリックグラフに限らず周期的な非均質性を持つ媒質で南雲方程式を考察する。周期性から反応拡散方程式の定常問題と等価な離散力学系を導出する。これにより、RD 方程式の定常フロント解は、離散力学系のヘテロクリニック列に対応する。一般に、離散力学系で安定多様体と不安定多様体が交差すると、興味深いことが起こるが、それがどのような意味を持つかを紹介する。この講演は、ペンシルベニア大学の森洋一朗氏と Aiden Sintavanhuruk 氏との共同研究に基づく。

Motivated by the propagation failure of the front solution to Nagumo equation on an infinite star-shape metric graph, we consider the same problem on a necklace-type metric graph. The typical feature of the necklace graph is its periodic heterogeneity. And this enables us to derive the discrete dynamical system which is equivalent to the stationary problem. In fact, the stationary front solution for the RD equation corresponds to the heteroclinic sequence of the discrete dynamical system. Thus, we study the intersection between stable and unstable manifolds of the discrete dynamical system. This talk is based on the joint work with Yoichiro Mori and Aiden Sintavanhuruk.

関坂 歩幹 (明治大学) Ayuki Sekisaka (Meiji University)

シリンダー領域上の反応拡散系の進行波の Stability index と Evans 関数

Stability index and the infinite dimensional Evans function for traveling Waves of reaction-diffusion systems on cylindrical domains

シリンダー領域上の反応拡散方程式のパルス型進行波の安定性問題を論じるために, Deng-Nii (2006) は無限次元 Evans 関数および stability index を構成した. この理論を拡張し, 境界条件や進行波のタイプに依らずに無限次元 Evans 関数と stability index が構成できることを紹介する. 特に, Fredholm-Grassmann 多様体と呼ばれるバナッハ多様体, K 理論や BDF 理論などの無限次元幾何学や作用素環論との関係についても紹介する.

To study the spectral stability of pulse-type traveling waves in reaction-diffusion equations posed on cylindrical domains, Deng and Nii (2006) constructed an infinite-dimensional Evans function and an associated stability index. In this talk, we extend their framework and present a construction of an infinite-dimensional Evans function and a stability index that works uniformly, independent of the choice of boundary conditions and of the type of traveling wave. We also explain connections with theories of infinite-dimensional geometry and operator-algebra, in particular the Banach manifold known as the Fredholm-Grassmann manifold, as well as K-theory and Brown-Douglas-Fillmore (BDF) theory.

三村 与士文 (日本大学) Yoshifumi Mimura (Nihon University)  
非勾配流に対する変分的な解の構成法と応用  
Variational Construction of Solutions for Non-Gradient Flows and Its Applications

本講演では発展方程式において時間を離散化し, 各時間離散点における解を方程式に付随するエネルギーの最小化問題として定めることにより近似解を構成する方法について議論する. この種の方法は勾配流に対して有効であり, ヒルベルト空間における勾配流や確率測度空間における勾配流など, さまざまな方程式に応用されてきた. 一方で, 勾配流構造は方程式の擾動によって失われる場合がある. そこで本講演では, 勾配流でない系に対しても本手法が有効となる条件を示すとともに, 走化性モデルへの応用について述べる.

In this talk, we discuss a variational approach to constructing approximate solutions for evolution equations by discretizing time and defining solutions at each time step as minimizers of an associated energy functional. This method has been successfully applied to gradient flows, including those in Hilbert spaces and in spaces of probability measures. However, the gradient flow structure may be lost under perturbations of the equation. In this talk, we present conditions under which the variational approach remains effective for non-gradient systems and discuss applications to chemotaxis models.

伊藤 涼 (神奈川大学) Ryo Ito (Kanagawa University)

反応拡散方程式の非有界および有界な進行波解の存在と速度公式

Existence of bounded and unbounded traveling wave solutions for reaction-diffusion equations

反応拡散方程式の非有界な進行波解の存在, およびその速度を表す公式について空間1次元の場合を対象に考察する. 有界な進行波解においては, 非線型項の種類によって進行波解が存在する速度の範囲が異なる. 具体的には, 単安定型においては進行波解の存在・非存在を分ける閾値となる速度が定まり, 双安定型においてはただひとつの速度に対してのみ進行波解が存在することが知られている. 本論では, 非有界な進行波解に対しては非線型項の型に依らず閾値となる速度が定まるることを紹介する. 証明は単安定型の非線型項に対する手法を参考に構成できるが, 同様な議論は semi-wave に対しても適用できる. 以上の進行波解の閾値速度を特徴づける種々の変分公式の関係を調べ, 有界・非有界な進行波解の閾値速度に対する存在・非存在に関する条件式を記述する. 本発表の内容は明治大学の二宮広和氏との共同研究に基づく.

In this talk, we investigate the existence problem of unbounded traveling wave solutions for one-dimensional reaction-diffusion equations. For bounded traveling wave solutions, it is well known that the range of admissible wave speeds depends on the type of nonlinearity. Specifically, in the monostable case, there exists a threshold speed, referred to as the minimal speed, that separates the existence and nonexistence of traveling wave solutions, while in the bistable case, a traveling wave solution exists only for a unique speed. We establish, for unbounded traveling wave solutions, the existence of the minimal speed under mild technical assumptions on the nonlinearity, even in the bistable case. The proof is constructed by adapting a method developed for monostable nonlinearities, and a similar argument can also be applied to semi-waves. We further investigate the relationships among several variational formulas that characterize the threshold speed of traveling wave solutions, and we describe the corresponding existence and nonexistence conditions for bounded and unbounded traveling wave solutions. This talk is based on a joint work with Professor Hirokazu Ninomiya from Meiji University.