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Front propagation on a general metric graph
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Reaction-diffusion equations on metric graphs are receiving growing attention these days.
Roughly speaking, a metric graph is a directed graph whose edges have a length scale, and
can thus be identified with an interval on the real line.

In this lecture, I will talk about a bistable reaction-diffusion equation on a metric graph
that consists of a general bounded finite metric graph D (which we call the "center graph™)
and a finite number of "outer paths™ that stretch from D toward infinity. Our goal is to
investigate the behavior of solution fronts that come from infinity along a given outer path
and to discuss whether or not the front can propagate into other outer paths. For that
purpose, we introduce a precise notion of " propagation” and " blocking”.

We first focus on general principles that hold regardless of the structure of D, such as the
dichotomy and transient principles. Next we consider perturbations of the graph D while
fixing the outer paths, and discuss whether or not the propagation and blocking properties
are preserved under perturbations. We then apply our general principles to several specific
metric graphs.
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Convergence to traveling waves for reaction-diffusion systems using Lyapunov-type argu-

ments

In this talk, we discuss the convergence of solutions of reaction-diffusion systems toward
traveling wave solutions. By employing Lyapunov-type methods, we establish that, when
the initial data is sufficiently close to a wave profile at infinity, the corresponding solution
converges to this traveling wave as time tends to infinity. As an application, we analyze
predator?prey systems and demonstrate the stability of traveling waves, thereby providing
new insights into the dynamics of non-cooperative systems. This work is joint with Jong-
Shenq Guo and Arnaud Ducrot.
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Propagating front solutions in a time-fractional Fisher-KPP type equation
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In this talk, we address the Fisher-KPP equation with a Caputo derivative as the time
derivative and discuss the long-time behavior of the front solution. After briefly reviewing
the background of the model, we present numerical results and discuss the expected prop-
erties of the solution. To further characterize the long-time behavior, we assume that the
solution asymptotically behaves like a traveling wave and present the results of our analysis
of potential traveling wave solutions to which it may converge. Finally, we explain how these

results contribute to a deeper understanding of the model.
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Reaction-diffusion approximations for nonlocal evolution equations
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In this study, we consider the initial value problem for nonlocal evolution equations with
arbitrary integrable kernels. Although a nonlocal evolution equation is a single equation, it
can generate spatial patterns similar to those observed in reaction-diffusion systems, and has
therefore attracted considerable attention from both biology and mathematics. We show that
solutions of the nonlocal evolution equations can be approximated by the first component
of reaction-diffusion systems with advection terms. In addition, when the integral kernel is
asymmnetric, we demonstrate that wavetrains can arise. This work is based on joint research
with Ayuki Sekisaka of Meiji University.
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Propagation and blocking of curvature flow with driving force in spatially periodic stripe

domains
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[ study the long-time behavior of curvature flows with driving force in spatially periodic
stripe domains. In such domains, solutions exhibit two distinct behaviors: propagation and
blocking. In this talk, I clarify how geometric features of the domain determine which of
these behaviors occurs.

Jong-Shenq Guo (Tamkang University)
Spreading dynamics for a 2-species competition system in a shifting environment

We study the spreading dynamics for two-species diffusive competition systems in shifting

environments caused by climate changes. Our main goal is a complete overview of conditions

for extinction and persistence of each species. We will be interested in the case of a strong-

weak competition, that is when one of the competitors would eventually drive the other to

extinction in the absence of climate change. Depending on the pace of climate change, but

also on whether the strong competitor is faster or slower, we will uncover wildly different

outcomes in the asymptotic behavior of solutions. This talk is based on a joint work with

Arnaud Ducrot and Thomas Giletti.
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Stationary front solutions in a bistable RD equation with periodic heterogeneity
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Motivated by the propagation failure of the front solution to Nagumo equation on an infinite
star-shape metric graph, we consider the same problem on a necklace-type metric graph.
The typical feature of the necklace graph is its periodic heterogeneity. And this enables
us to derive the discrete dynamical system which is equivalent to the stationary problem.
In fact, the stationary front solution for the RD equation corresponds to the heteroclinic
sequence of the discrete dynamical system. Thus, we study the intersection between stable
and unstable manifolds of the discrete dynamical system. This talk is based on the joint
work with Yoichiro Mori and Aiden Sintavanuruk.

B3R e (BAIAEKS) Ayvuki Sekisaka (Meiji University)
) ¥ X —EE L O RICIEECR D AETTIH O Stability index & Evans B%L
Stability index and the infinite dimensional Evans function for traveling Waves of reaction-
diffusion systems on cylindrical domains
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To study the spectral stability of pulse-type traveling waves in reaction-diffusion equations
posed on cylindrical domains, Deng and Nii (2006) constructed an infinite-dimensional Evans
function and an associated stability index. In this talk, we extend their framework and
present a construction of an infinite-dimensional Evans function and a stability index that
works uniformly, independent of the choice of boundary conditions and of the type of trav-
eling wave. We also explain connections with theories of infinite-dimensional geometry and
operator-algebra, in particular the Banach manifold known as the Fredholm-Grassmann
manifold, as well as K-theory and Brown Douglas Fillmore (BDF) theory.
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Variational Construction of Solutions for Non-Gradient Flows and Its Applications
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In this talk, we discuss a variational approach to constructing approximate solutions for evo-
lution equations by discretizing time and defining solutions at each time step as minimizers
of an associated energy functional. This method has been successfully applied to gradient
flows, including those in Hilbert spaces and in spaces of probability measures. However, the
gradient flow structure may be lost under perturbations of the equation. In this talk, we
present conditions under which the variational approach remains effective for non-gradient

systems and discuss applications to chemotaxis models.
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Existence of bounded and unbounded traveling wave solutions for reaction-diffusion equa-

tions
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In this talk, we investigate the existence problem of unbounded traveling wave solu- tions
for one-dimensional reaction-diffusion equations. For bounded traveling wave solutions, it is
well known that the range of admissible wave speeds depends on the type of nonlinearity.
Specifically, in the monostable case, there exists a threshold speed, referred to as the minimal
speed, that separates the existence and nonexistence of traveling wave solutions, while in
the bistable case, a traveling wave solution exists only for a unique speed. We establish, for
unbounded traveling wave solutions, the existence of the minimal speed under mild techni-
cal assumptions on the nonlinearity, even in the bistable case. The proof is constructed by
adapting a method developed for monostable nonlinearities, and a similar argument can also
be applied to semi-waves. We further investigate the relationships among several variational
formulas that characterize the threshold speed of traveling wave solutions, and we describe
the corresponding existence and nonexistence conditions for bounded and unbounded trav-
eling wave solutions. This talk is based on a joint work with Professor Hirokazu Ninomiya
from Meiji University.



