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Abstract.

The interaction of stable pulse solutions on R! is considered when distances between pulses are sufficiently large. We
construct an attractive local invariant manifold giving the dynamics of interacting pulses in a mathematically regorous
way. The equations describing the flow on the manifold is also given in an explicit form. By it, we can easily analyze
the movement of pulses such as repulsiveness, attractivity and/or the existence of bound states of pulses. Interaction
of front solutions are also treated in a similar way.
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1. Introduction.

Reaction diffusion systems have been widely treated in order to study temporal and/or spatial
pattern formation problems for various phenomena. Among them, the research for the systems on one
dimensional space has extensively progressed. Through the research, many important and interesting
solutions describing patterns have been shown and analyzed. Traveling wave solutions are one of the
typical examples among them, which stand for propagating spatially localized patterns. The existence
and stability of traveling wave solutions have been shown for many models such as the Allen-Cahn
equation [18], the FitzHugh-Nagumo system ( [30], [17] and their references), the Gray-Scott model
([3]) and so on.

In this paper, we suppose the existence of a stable traveling wave or pulse solution and consider
the interaction between them. This problem is crucially related to the pattern formation problem,
specially to the time evolutional process of localized patterns. The typical example for this problem
is the interaction of fronts in the Allen-Cahn equation

1
(1.1) utZEQumx—i—iu(l—uQ), t>0, —oo <z < o0

(1.1) has a stable stationary front solution U(z) = tanh; satisfying U(+o0) = +1 and U(0) = 0,
€

which represents a localized pattern. Since (1.1) has a translation invariance, functions U(z — )
and U(—x + 1) are also stable stationary solutions of (1.1) for an arbitrarily fixed constant [ € R".
Solutions close to U(x —1) and U(—xz +1) are called kink and antikink solutions respectively. Then,
the problem which we will concern here is the interaction of these kink and antikink solutions. That
is, we consider how the dynamics of solution is if the initial data u(0, z) is sufficiently close to U(z —
21(0)) + U(—x 4 22(0)) — 1 with 21 (0) << 22(0). The dynamics is well known ([21], [2] and [15], [13])
that if € > 0 is sufficiently small, the solution u(¢, z) remains close to U(z —z1(t)) + U(—z +z2(t)) — 1
and x1(t), z2(t) are approximately governed by

1
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1.2
(1.2) {:'UQ = 12N,

where h = zo(t) — x1(¢). (1.2) describes the coarsening process of the localized patterns because (1.2)
means the attractivity of kink-antikink front solutions.

Similar properties hold for the interaction of front solutions in competition-diffusion systems,
which is stated in detail in Section 3.
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Another important example may be the dynamics of fronts in the Cahn-Hilliard equation. The
equation describing the interaction of fronts shows the similar coarsening process to (1.2), which has
been extensively studied ([1] and its references). But, we will not touch on it in this paper because it
has a conservation law and is considered in a bounded interval. In fact, results in this paper are not
directly applicable to the dynamics of fronts for the Cahn-Hilliard equation.

On the other hand, localized pulse like patterns in the Gray-Scott model exhibit self-replicating
dynamics under some conditions and spatial patterns become complicated ([25], [24]). Also in this
process, the interaction of localized patterns gives great influences to the splitting behaviors, which
will be reported in the forthcoming paper [11], [12].

Another important and interesting example is the interaction of nerve impulses. Plural nerve
impulses frequently run along a nerve axon at the same time depending on initial impulses. Then,
the repulsiveness of nerve impulses plays an important role to transmit informations ([29]). On the
other hand, there is a simplified model equation called the FitzHugh-Nagumo system describing the
dynamics of nerve impulses. A traveling pulse solution of the model equation corresponds to the
nerve impulse. By analyzing the interaction of the traveling pulses, we can give the theoretical basis
to the repulsive behaviors. In fact, the interaction of traveling pulse solutions in the FitzHugh-Nagumo
system was shown to be repulsive under some assumptions by using a formal analysis and the specialty
of the system ([4]), Other dynamics of interacting traveling pulses in the FitzHugh-Nagumo systems
have also been reported in various settings (e.g. [31], [16]) while they are all formally derived results.

Thus, to consider the interaction of localized solutions gives the important informations on the
evolutional process of patterns, but almost all of the results so far have been due to formal discussions
except the interaciton of kink-antikink front solutions for the Allen-Cahn equation.

The purpose of this paper is to give a general criterion on the dynamics of weakly interacting
traveling wave or pulse solutions in mathematically rigorous way.

Let us consider reaction-diffusion systems of the form

(1.3) u; = Dug, + F(u), t >0, —00 < x < 00,

where w € R", D = diag(di,ds,---,d,) (d; > 0) and F is a smooth function from R" to R". We
suppose for (1.3) that:
H1) There exist linearly stable equilibria P~ and P* in the ODE

H2) (1.3) has a traveling wave solution with velocity 6 connecting from P~ to P*. That is, there
exist a constant @, positive constants «, 8 and a function P(z) satisfying the equation

0=DP,, — 0P, + F(P), —o0 < z < 00,
(1.5) |P(z) — PT| < O(e™*) (2 = +00),
|P(2) — P~| < O(e#?) (z = —o0).

We note that u(t,z) = P(x + 0t) is a solution of (1.3).
H3) Let a differential operator L be

Lv = Dv,, — v, + F'(P(z))v, —0 < z < 00

for v(z) € H?(R"). Then, the spectrum X(L) of L is given by X(L) = ¥ U {0}, where 0 is a
simple eigenvalue and there exists a positive constant py > 0 such that Xy C {z € C; Rz <
—po}-

H3) means the traveling wave solution P(z) is stable in a linearized sense. We call P(z) satisfying the
assumptions H1) ~ H3) for a constant 6 stable traveling wave solution with velocity 0. Many models
of reaction-diffusion systems have stable traveling wave solutions in this sense.

Transforming (1.3) by z = x + 6t, we have

(1.6) ut = L(u),
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where L(u) = Du,, — 6u, + F(u). We note that the stable traveling wave solution P(z) is a stable
stationary solution of (1.6).

Let P(z) be a stable traveling wave solution with velocity 6. Throughout this paper, we call P(z)
(stable) 1-pulse solution when P~ = P7T and (stable) 1-front solution when P~ # P71 respectively.

Let us consider the interaction of 1-pulse solutions, for example. In this case, we may assume
P~ = P* = 0 without loss of generality, where 0 = (0,0,---,0) € R". If the initial data u(0,z) of
(1.3) is close enough to P(z — y7) + P(z — y3) for sufficiently large y5 — yf, then it is shown by the
main results in Section 2 that the solution w(t, z) remains sufficiently close to the function

Pz + 0t —yi(t)) + Pz + 0t — ya(t))

as long as ys(t) — yi(t) is large enough. y;(t) (j = 1,2) are essentially governed by the ordinary
differential equation with initial data y;(0) = Y5,
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(1.7) { Yo =— (L(P()+P(z+h),¢");:,

where h = h(t) = y2(t) — y1(t) and ¢" is an eigenfunction corresponding to 0 eigenvalue of the adjoint
operator L* of L normalized by ( P,,¢* ), = 1. (-,- ). denotes the inner product in L?(R").
REMARK 1.1. When 0 = 0 and the linearized operator L is self-adjoint, corresponding results to
(1.7) were obtained by Schatzman [28]. Sandstede [27] has got almost same results as this paper at
the same time independently of the author.
When P(z) converges 0 such that

P(z) = e **a™ (z = +o0),

P(z) = e¥*a™ (z = —0)
for positive constants a, B and non-zero constant vectors a* in R", we call exponentially monotone
convergent. If P(z) converges 0 in an exponetially monotone way, then it is shown in Section 2 that
the right hand side of (1.7) are written

(1.8) { (L(P(2) + P(z — b)), " ), Mie 5" (14 0(e)),
' (L(P(:)+ P(z+ h)).¢" Vra = Mae— (14 O(e—"))

as h — +oo for some constants M; and v > 0. Combining (1.7) and (1.8), we have
(19) ]’L ~ Mle_ﬁh - Mge_ah.

Thus, the values of constants M; are important to determine whether 1-pulses are repulsive or at-
tractive while it has been a difficult thing so far. In Section 2, main results will be stated and
the formulas for the explicit form of M; are given. Applications to several examples including the
FitzHugh-Nagumo system, the Gray-Scott model equations will be in Section 3. We shall show in
the section that the constants M; can be calculated in explicit forms and we can know easily the
interaction of 1-pulses.

The case of the interaction of stable 1-front solutions is treated in a similar manner to the case of
stable 1-pulse solutions, but in a slightly different setting from pulses. It will be mentioned parallel
to 1-pulses.

Proofs will be in Sections 4 and 5. The basic tools for proofs are integral manifold theory. To
construct the unstable manifold, we use the analogous manner in [1] and [2], but the manner of the
construction developed in this paper is fairly generalized to be applicable to quite a general reaction-
diffusion systems as (1.3).

2. Main results.
Suppose the assumptions H1) ~ H3).



2.1. Interaction of 1-pulses. In this subsection, we assume equilibria P* = 0.

Let P(z) be a stable 1-pulse solution of (1.3) with volicity 0 and fix it. Let ¢*(z) be the eigen-
function of L* normalized by ( P.,¢" ). = 1 as stated in Section 1. We consider (1.6) instead of
(1.3). Arbitrarily fixing the number of considered 1-pulses, say N + 1, we let

P(z;h)=P(2)+ P(z —21) + -+ P(z — zn),

where h = (hq, ho,-- -, hy) for hj >0 and

Here, we set zg = 0 for convenience.
Let 2(1) be the translation operator given by (2(I)v)(z) = v(z — 1) for v € L?*(R'). Moreover,
define the quantity

o(h) = sup [L(P(zh))l,
zEI:l),1

the set
M(h*) = {E(1)P(z;h) ; | € R",minh > h* },
and functions
Hj(h) = (L(P(z+ zj; b)), @7 )12

for j =0,1,---,N. Here, min h means min{hy, ho, -, hy} for h = (hy, ha, -+, hy). Then, we have
THEOREM 2.1. There exist positive constants h*, Cy and a neighborhood U = U(h*) of M(h*)
in { H*(R")}" such that if w(0,-) € U, then there exist functions I(t) € R" and h(t) € R such that

(2.1) [u(t, ) = E(U#) P(z; h(t)) [0 < Cod(h(1))

holds as long as min h(t) > h*, where u(t, z) is a solution of (1.6). Functionsl(t) € R' and h(t) € RY
satisfy

(2.2) h = H(h) + 0(6%),
(2.3) I = —Ho(h) +O(5°),
where 6 = §(h(t)) and H = (Hy — Hy, Hy — Ho,---,Hny_1 — Hy).

REMARK 2.1. Since L(P(z — z;)) = 0 and L£(0) = 0 hold for any z;, we have 6(h) — 0 as
minh — co. On the other hand, the magnitude of max H;(h) is O(6(h)), which means H(h) in (2.2)
J

or (2.8) are necessarily dominant as long as min h is large enough.
REMARK 2.2. Theorem 2.1 gives the motion of positions y; =1+ z; (j =0,1,---,N) of the j-th
pulse by
yj=l+hi+-- +h;
= —H;(h)+ 0(5?).

Consider the ordinary differential system consisting of the principal parts of (2.2)
(2.4) h = H(h).

THEOREM 2.2.  Suppose all of the elements d; of D are positive. Then, there exist positive
constants Cy, C1 and h* such that if (2.4) has an equilblium h satisfying minh > h* and the set of
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eigenvalues L(H'(h)) C {z € C ; Rz < —Cod(h)}, there exists a stable traveling wave pulse solution
P(z+0t) of (1.6) such that

IP(2) = P(2:h)llc < C16(h)

and 6 = Ho(h) + O(6(h)). Here, H'(h) denotes the linearized matriz of H with respect to h.

If (2.4) has an equilblium h such that minh > h* and the set of eigenvalues Z(H'( ) C {z €
C; Rz < —Cod(h)}U{z € C; Rz > Cod(h)} and at least one eigenvalue of H'(h) is in {z €
C ; Rz > Cod(h)}, there exists an unstable traveling wave pulse solution P(z + 0t) of (1.6) such that

12(2) = P(z; b0 < C1(h)

and § = Ho(h) + O(62(h)).

REMARK 2.3. The results stated in Theorem 2.2 have been already obtained by Sandstede [26].
Theorem 2.2 gives an another proof of the results by using the invariant manifold theory as mentioned
in the proof.

REMARK 2.4. The situation of Theorem 2.2 occurs e.g. in the case when the tail of 1-pulse P(z)
is oscillatory. This will be stated in Section 3.

Now, we can know the explicit forms of functions H;(h) when P(z) converges 0 in an exponentially
monotone way. We note here that we may generically assume the corresponding adjoint eigenfunction
¢" also converges 0 in similar decaying rates. That is,

THEOREM 2.3. Suppose P(z) converges O satisfying

(2.5) P(z) =e **(a®™ +0(e™ %)) (z = +00),
(2.6) P(2) = e**(a™ 4+ 0(e7%)) (z — —o0)

for positive constants o, B and v and non-zero constant vectors a* € R"™, and suppose ¢* also
converges 0 in an exponentially monotone way such that

(2.7) o (2) = e (b +0(e77)) (2 = +00),

(2.8) ¢ (z) =e**(b” +0(e"*)) (z = —00)

for non-zero constant vectors bt € R". Then, functions H;(h) are represented by

(2.9) Hy(h) = (MgePhr 4+ Mae’a’”) (1 +O(e™ minh))
(j=1,2,---,N —1),

(2.10) Hy(h) = Mge (1 +0(e™” ““nh'

(2.11) Hy(h) = Mye~oh~ (1 +O(e mmh))

for a constant ' > 0 and the constants M,, Mg are given by

(2.12) Mg =2B8(a",Db")—0{a",b"),

(2.13) My =2a(a",Db" ) +0{a", b ),

where ( -, ) stands for the inner product in R".

COROLLARY 2.1. Suppose P(z) is a symmetric standing pulse, that is, P(z) satisfies P(z) =
P(—2) with = 0. If P(z) converges 0 in an exponentially monotone way, then o = 8, a™ = a~, say
a, and bt = —b~, say b, hold in (2.5) ~ (2.8) of Theorem 2.3. Hence, it follows that

(214) Hj(h) = M, (e_ahj+1 _ e_ahj) (1 + O(e—'y' minh))
(] =1,2,---,N—-1),

(215) Ho(h) _ Moefahl (1 + 0(677, minh)) 7

(2.16) HN<h) - _Moe—oéhN (1 + O(e—'y’ minh>) 7

5



and the constant My is given by

(2.17) My =20{a,Db).

REMARK 2.5. Theorem 2.1 and Corollary 2.1 show that the movement of interacting symmetric
pulses is just determined by the sign of the constant My because the dynamics is given by

(2.18) h; = My (26704}” — e v e*ahjfl) + 0(9).

(2.18) implies My > 0 reads the repulsiveness and My < 0 does attractivity of pulses.

REMARK 2.6. In the situation of Corollary 2.1, § = d(h) = O(e“"mi“h) holds. Hence, the term
My (26_""” — e~ hir1 e“"hﬂ'*l) in (2.18) may not be necessarily dominant when there are more
than three pulses and distances between pulses are extremely different. But, we can also prove on the
movement of each h;

(2.19) Iij = M, (26_(”” — e it _ e_ahjfl) +o (e_“hf + et 4 e_ahjfl)

for any distribution of pulses, which means the term M (267’”‘7' —e it — e""hﬂ'*l) is necessarily
dominant for the movement of the j th pulse. This is proved by slightly modified manner of the proof
of Theorem 2.1, but the detail will be mentioned in the forthcoming papars ([12], [14]) because the
some parts of the proof are jointly worked in those papers.

2.2. Interaction of standing 1-fronts. For the interaction of 1-fronts, we can consider only
the case of the velocity § = 0. We use the same notations as in the previous subsection with § = 0,
but use x as the space variable instead of z because of x = z in this case.

Let P(x) be a stable 1-front solution of (1.3) with § = 0 and fix it. Note that P(—=x) is also a
stable 1-front solution connecting from PT to P~. Assume the number of 1-fronts N+1 = NT+ N,
where Nt and N~ are the numbers of 1-fronts of the shapes P(x) and P(—z), respctively. We note
that either Nt = N~ or N* —1 = N~ holds. For N + 1 1-fronts, we define

P(z;h) = P(z)+ P(—(z —21)) + P(x —22) + -+ P ((-1)" (z —an)) = {NTPT+ (N~ —1)P"}
if Nt = N~ and define
P(z;h) = P(z)+ P(—(z —21)) + P(x —22) + -+ P (-1)" (z —an)) = {(NT = 1)PT + N~ P~}

if Nt —1 = N—, where h = (hy,h,---,hy) € RV, 2; = Zf:{hk for 7 =1,---,N and 29y = 0.
Define functions H;(h) (j =0,1,---,N) by

Hj(h) = ( L(P(z +xj:h), ¢"((=1)2) )2 -

Then, we have
THEOREM 2.4.
Theorems 2.1 and 2.2 hold in the same statements but

(2.20) hy = (=1 (H;_1(h) + H;(h)) + O(5%) (j = 1,2,---, N),
(2.21) [ = —Hy(h) + 0(5%),
and

H = (Hy+ Hy,—(Hy + Hs), -+, ()N (Hy_1 + Hy)).

THEOREM 2.5. Suppose P(x) converges P* as
(2.22) P(z) — PT = e *(a™ + O(e™ ")) (x = +0o0),

(2.23) P(z) — P~ = e (a™ +0(e™)) (z — —o0)
6



for positive constants o, B and v and non-zero constant vectors a* € R™, and suppose ¢* converges
0 in an exponentially monotone way such that

(2.24) 67 (2) = e~ (b + O(e~77)) (& — +o00),
(2.25) ¢*(x) = ’* (b + 0(?*)) (x — —o0)
for non-zero constant vectors b= € R™. Then, functions H;(h) are represented by
(2.26) Hajoa(h) = (MFemeheis — pp=e=Phes) (14 O minhy)
(.7 = 1727"'7N+)7
(227) ng(h) = (M+e_ah2j+1 _ M—e—ﬁhzj) (1 + O(e—'y’ minh))
(] = 1527"'5N7)7
(2.28) Ho(h) = M*e™m (14 0(e™7" mnhy),

M*e—ohn (14 0(e= minh)) (if N+ = N-),

. Hy(h) =
(2.29) n(h) M—e—Bhn 1+O(ef'y’minh) (if Nt —1=N")

for a constant ' > 0 and the constants M* are given by

(2.30) M* =2a(a",Db"),
(2.31) M~ =28(a",Db” ).

3. Applications.
In this section, the notation f(h) ~ g(h) stands for f(h) = g(h)(1+ o(1)) as h — oc.

3.1. Interaction of 1-fronts in the Allen-Cahn equation. In this subsection, we consider
the interaction of 1-fronts of

(3.1) Uy = €2y + f(u), t >0, —00 <z < 00,

1
where u € R, f(u) = §u(1 —u?) and ¢ is a sufficiently small positive parameter. Then, (3.1) has a

stable standing 1-front P(z) given by
z
P(z) = tanh —
(z) = tan 5

as in Section 1. This 1-front is linearly stable and connecting P* = 41 ( [18]).

Let us consider the interaction of two 1-fronts P(x — ) and P(—(x —1— h)) for I, h > 0 by using
Theorems 2.4 and 2.5. Let P(z;h) = P(z) + P(—(2 — h)) — 1. Then, 6(h) = sup__p [L(P(z;h))| is
estimated as O(e™ ) because the asymptotic form of P(z) as 2 — oo is
(3.2) P(x) — —2e7% 4 1.

On the other hand, the eigenfunction ¢*(x) is easily obtained as

" 3e
o) = S Pal)
together with its asymptotic form
(3.3) ¢*(x) = 3e™ % (x — 00)
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because the linealized operator with respect to P(z) is self-adjoint. Thus, all of necessary quantities
in Theorem 2.5 are given by

D=¢% a=

1
—,at=-2,b"=3
>

from (3.2) and (3.3). Hence, H;(h) are calculated as

Hy(h), Hi(h) ~ MYe " =20 (a*, Db ) e "

1 1
:2-7-_2.2.3._Eh
S(-2) B
= —12ce"ch
and we get the equation of [ and h as
(3.4) [ = —Hg(h) + O(62(h)) ~ 12e¢ =",
. h = (Ho(h)+ Hy(h)) + O((h)) ~ —24ce= 2.

Especially, the equation of the distance h of two 1-fronts is that otained by [13], [2] and [15].

3.2. Interaction of 1-pulses in the FitzHugh-Nagumo system. Let us consider the equa-
tion

(3.5) { up = 2Ugy + f(u) — v,

vy = e(u—bv),

where f(u) = u(l1—u)(u—a) (0 < a < 3), b is small enough that two graphs v = f(u) and u = bv have
no intersection except 0 = (0,0). When € > 0 is suffiently small, it is known (e.g. [17], [30] ) that (3.5)
has a stable traveling 1-pulse solution, say P(z) = (®(z), ¥(z)), with velocity § = ec for a positive
constant ¢ and converging 0 in an exponentially monotone way. Transforming (3.5) by z = = + ect,
we have

(3.6) us = Du,, — ecu, + F(u),

g2 0 flu)—v
where u = (u,v), D = ( 0 0 > and F(u) = ( S —bw) )
Let ¢ = ¢o + ec; + O(g2). By the construction of P(z) (e.g. [30]), the asymptotic form of P(z) is
easily known as

37) CORR B g,

for a positive constant K1, a~ € R? and

1 1
(3.8) o= (b—f,(0)> +0(e),
(3.9) at = —K, ( f,%o) ) +0(e) € R?

for K5 > 0. Hence, 6(h) =sup__pn [L(P(2) + P(z — h))| is O(eoh).
On the other hand, the eigenfunction ¢*(z) of the adjoint operator of the linearized equation of
(3.6) extensively studied in [4], [9]. By using the result, we can know the asymptotic form of ¢* as

e**b” (z = —00),
e eyt (z = +o0)
8

-



for K3 >0, b" € R? and
_ w5 + O(g?)
3.10 b =K, 'O R?
(8.10) 4 ( ~1+0(6) )€
for K4 > 0. Hence, Theorems 2.1 and 2.3 yield the equation of pulse distance h as follows:

Lis )

h=—Mye " 4 Mge™ =" + O(8%(h)) ~ —Mpe™ .

Here, we ignored the second term in the above equation due to the smallness of £, We can also obtain
the explicit value of M, by substituting (3.8), (3.9) and (3.10) into (2.12) as

M, =2a{a",Db” ) +ec{a®,b")
= eco Ko K4 f'(0) + O(e?)
< 0.
This shows two 1-pulses in (3.5) interact repulsively.
3.3. Interaction of 1-pulses with oscillatory tails. In this subsection, we will consider the
interaction of two 1-pulses with oscillatory tails such that

P(z) > R (e’\izai)

as z — Fo00, where a* € C" and A\t = —a +iv™, \™ = B+ iv~ for positive constants a, /3, and
we assume either v* is not zero. We let v # 0 for simplicity and suppose o < 3. This means the
right tail of P(2) converges 0 slowly and oscillatorily. This setting has been extensively studied for
the pulse solution of the FitzHugh-Nagumo system related to multi-pulse solutions ( see e.g. [26] and
the references).

Let us consider the interaction of two 1-pulses. Then, the equation describing the distance h
between 1-pulses is

h=Hy—H
as in Theorem 2.1. By quite a similar way to the proof of theorem 2.3, we can show
Ho(h) = R (e—”M— (1 + 0(6_7/"))) :
Hi(h) = R (e/\+hM+ (1 + O(eﬂ’h)))
for a constant 7' > 0, where

= [T (PP - P 0jat () i

M= [ PP - P 9() ) d

Note that the constants M+ and M~ are well defined because the integrals giving their constants are
given as the Fourier transformation because of the form of A*. Let M* = A% 4+ iB*. Then, we have

Hy(h) ~ e P"(A~ cosv™h — B~ sinv™h),
Hi(h) ~ e (AT cosvth + Bt sinvth).
Since a < 8 and §(h) = O(e~*") in this case, the equation on h is
(3.11) h=Hy— Hy +O(0?(h)) ~ —H, ~ —e~*"(A* cosv™h + B sinv*h)

for sufficiently large h. From (3.11), we easily find that stable and unstable equilibria appear alter-
natively in (3.11) satisfying the assumptions of Theorem 2.2 because d(h) = e~*". This gives the
existence and its stability of double pulse solutions by Theorem 2.2.

We have considered the interaction only of two 1-pulses in this subsection, but the method de-
veloped here is easily extended to arbitrarily many numbers of 1-pulses. Thus, we can easily give an
another proof on the existence and stability analysis of multiple-pulse solutions.

9



3.4. Interaction of 1l-pulses in the Gray-Scott model on 1-D. We will show the repul-
siveness of pulses in the Gray-Scott model equations on one dimension. The model equation here
is

(3.12) { U = g —w® + AL ),

vy = Dyvgy — Bv + uwv?,

where A, B and D, are positive constants. Doelman et. al. [3] showed the existence of a stable
standing 1-pulse solution, say P(z) = (®(x), ¥(z)) under the assumptions

A=é%a, B=¢"b, D, =¢°

for a small parameter € > 0 and positive constants a. b and 0 < v < 1. We consider in this subsection
only the case v = 3. The profile P(z) is then given by ([3])

3

o(e) = eHpo+o()}, (@~ 0),
(3.13) Olx) = Bo(z)+o(l), x>0,
U(z) = e Haoln)+O0(H)

as € — 0, where py = 3b 37 qo(n) = %\/gsech2 (%n), n= ¢~ iz and @ is the function satisfying

9%®

o+ 2a(1 — ®p), Bo(0) = €1 py, Bo(co) = 1.

0=

Let us obtain the adjoint eigenfunction ¢*(z) = (¢*(x),9*(x)) corresponding to the zero eigen-
value of the adjoint operator. Here, we note that the following calculations are all easily justified by
singular perturbation techniques though we treat it by the formal asymptotic expansion for simplicity.

The equation which should be satisfied by ¢* is

(3.14) 0= Upy — (V2 + 2a)u + T2,
(3.15) 0 = gy — 200y + (20T — e2b)v
with 4(0) = v(0) = 0 and u(c0) = v(00) = 0 because ¢* is a bounded odd function. It suffices to

consider (3.14) and (3.15) only for # > 0. Transforming (3.14) and (3.15) by u = ei¢p, & = eip,
v = e’%@/}, U= e*iq and x = e%n, we have

(3.16) 0= ¢y — (e + €2 a)p + ¢,

(3.17) 0 = vy, — 2epqd + (2pg — D)y

Suppose ¢ = ¢g + o(1) and 1 = ¢y + o(1) as € — 0. Then, ¢ and v satisly
9o

(3.18) 0="72 + g5vbo,
82

(3.19) 0= Yo + (2pogo — b)vbo

on?

with ¢o(0) = 1(0) = 0. Substituting po and go(n) into (3.19), we have

0? b
0= (’“)7171;0 +0b {i’)sech2 ({n) - 1} N

which is easily solved (e.g. [22]) as 1o(n) = 7M;(n) for r € R", where

M (1) = sech? (?n) tanh (?n) .
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Hence, ¢q is obtained as

do(n) = rMa(n),

where

n n'
Ma(n) :/O {/O a5 (") M (" )dn” +K5}dn’
and K5 = / g2 (n) My (n)dn. Let ¢* = My(00), which is a positive constant.
0
On the other hand, for x > 0, we may assume ¥ = 0 and v = 0 in (3.14), (3.15) because ¥(x)

3 3
and v(z) are O(e=*/<"). Let u(z) = up(x) + O(e=¢#/<") as € — 0. Then, ug satisfies

2
78’&0 2
= gz <

with ug(0) = €ir¢* and ug(oo) = 0. Hence, it follows

o*(x) = rei
(3.20) ¢o*(x) = rei(Cem VI 4 o(1)), (x> 0),
Yr(x) = re i(My(em i)+ o(1))

|
<
™

as € — 0 and therefore,

(P e =20t ([ dntdsman+ o) )

holds. This means the normalized condition ( P, ¢" ). = 1 yields r = —ry/e < 0 for 1o > 0. Since
the asymptotic forms P(z) and ¢*(z) are respectively given by

P(z) — e~ V%%q, ¢*(z) — e~ Vb,
where @ = (—a™,0) and b = (e%rg*, 0) for a positive constant a™, the constant My in Corollary 2.1 is
My =2a( Da,b) = 26\/5(—a+)6%7(* = 2¢i/aatroC* >0
due to the positivity of ¢* and 7, where a = ey/a and D = diag(1, D,,). Thus, we find the interaction
is repulsive.
3.5. Interaction of 1-fronts in competition-diffusion systems. The model equation which

we consider here is the following system

Uy = Ugr +u(1 —U_av),
(3.21) { vy = duge +v(c—bu—v),

1
where a, b, ¢ and d are positive constans. For (3.21), it is known by [20] that if o < b is satisfied,
then the kinetics of (3.21) is bistable, that is, (3.21) has two stable equilibria P™ = (0,¢), P~ = (1,0)
1
and there exists ¢ = ¢y € (E, b) such that (3.21) has a unique stable front P(x) with velocity § = 0

connecting P*. Fix ¢ = ¢ in (3.21) and let P(z) = (®(x), ¥(x)) be the stable standing 1-front with
P(z) — P* as © — +o0.

11



Let us consider the interaction of two 1-fronts P(x — ) and P(—(x — 1 — h)) for I, h > 0. First,
we note that

(3.22) O.(z) <0, ¥y(z) >0
hold for —oco < = < oo (]20]). This means the asymptotic form of P(x) is
(3.23) P(z) = e “a® + Pt (z — c0)

for & > 0 and a vector a™ € R? written by at = (p, —q) for positive constans p, g.
On the other hand, it is also known in [20] that the eigenfunction ¢*(z) = (¢*(z),%*(z)) of the
adjoint operator of the linearized equation of (3.21) satisfies

(3.24) " (z) - ¥ (x) <O.

Since ¢"(x) is normarized by the condition ( P, ¢" );>» = 1, (3.22) and (3.24) imply ¢*(z) < 0 and
P*(x) > 0 for —0o < x < co. Hence, we can find that the asymptotic form of ¢*(z) is

(3.25) o (z) = e b (2 — o),
where bt = (—r,s) € R? for positive constants r, s. Thus, Theorems 2.4 and 2.5 yield

Ho(h), Hl(h) ~ M+€_ah
=2a(at, Dbt )e "

ed(2) (38

= —2a(pr + dgs)e™"
<0

and the equation of the distance h
h ~ Hy(h) + Hy(h) ~ 2M*e™" = —4a(pr + dgs)e™ " < 0.
This shows the attractivity of 1-fronts.

4. Proofs of Theorems.

In this section, we will devote ourselves to the proofs of theorems in Section 2.1. Theorems in
Section 2.2 are all proved in quite a similar manner to this section and we omit the proofs.

In this and the following sections, C' denotes a generic positive constant independent of h with
sufficiently large min h and we take h* sufficiently large as required in following lemmas.

First, we consider the case that all of the elements of D = diag(dy,da, -, d,) are positive.

4.1. Preliminaries for the proofs of Theorems 2.1, 2.2. Let X = {LQ(RI)}n with the
norm || - || and

L(h)v = Dv,, — v, + F'(P(;h))v,
L*(h)v = Dv,, +0v, +'F'(P(-;h))v

for v € {HQ(Rl)}n, where ! F' means the transposed matrix of F’. These operators are sectrial in X.
PROPOSITION 4.1. There exist positive constants C' and h* such that for h with minh > h*,

the operator L(h) has N + 1 semi-simple eigenvalues {\;(h)};=o,... v with |\j(h)| < Cé(h). Multiple

eigenvalues are repeated as many times as their multiplicity indicates. Other spectra of L(h) are in

the left hand side of z = —pg for a positive constant pg.

Proof. . See e.g. [23] and [26]. 1

Let E(h) be the eigenspace corresponding to eigenvalues {\;(h)};=o,... v. The adjoint operator
L*(h) has also similar N + 1 semi-simple eigenvalues {A\(h)};j=o,....nv with [A7(h)] < Cd(h). Let
E*(h) be the eigenspace corresponding to eigenvalues {\}(h)};j=o,....n-

12



PROPOSITION 4.2. E(h) and E*(h) are spaned by N+1 functions {¢;(h)(-)} and {¢;(h)(-)} (j =
0,---,N) respectively such that for j =0,---,N,

NN
B oW N
— N N

(4.
(4.
(4.
(4.

hold, where 6 = 6(h), z; = z;(h), and O(0) mean in this lemma ||O(6)| g2 < C9.

Proofs of Propositions 4.1 and 4.2 will be given together in Section 5 for convenience while the
proof of Proposition 4.1 has been already shown in some papers ( [23] and [26] ).

Now, we fix h* > 0 large enough such that Propositions 4.1 and 4.2 hold.

Let operators Q(h) and R(h) be the projection from X to E(h) and R(h) = Id—Q(h) respectively,
where Id is the identity on X. Let E+(h) = R(h)X. Note that E+(h) is characterized by

Ef(h)={veX; (v,¢j(h)).=0(=0,---,N)}

Let h* = (h*,h*,-++,h*), b = (h1,ha, -+, hy) € RV with minh > h* and 6* = 6(h"), § = d(h).
We define a map II(h) from E+(h) to EL(h) for h = (hy,ha,---,hy) € RY with hj > h as follows:
Let O(r;h) =rh+ (1 —r)h (0 <r < 1) and let

N
=S (b= ) (o, fhjcb;;(@(r)) )1 b (0(r))

4,k=0
for v € X, where ©(r) = O(r; h). Define the map II(h) by II(h)vg = v(1), where v(r) is a solution of
dv
U(O) = vy € X.

LEMMA 4.1. R

The map 1I(h) is a homeomorphism from E+(h) to E+(h).
Proof. Let v(r) be a solution of (4.5) with vy € EL(fAL) We simply write Q(r) = Q(O(r;h)),
R(r) = R(O(r; h)) and so on. Let v1(r) = Q(r)v(r) and va(r) = R(r)v(r). Then, v (r) satisfies

d’Ul

1 O G)

= B20) (1) + 0a() + QIS () (01 (1) + v(r)
= T2 ()(wa(r) + 02(0) + S)01(r) — %2 1)

(4.6 = 2 )0 () + SYr (1),

because Q(r)S(r) = S(r) and

dQ
S(r) El(r) = —%(T) B

hold.
13



Similarly, va(r) satisfies

2 _ L Ry
= o) + RS (0)
= - 0y0i) + BE)S ()
(4.7 =~ wi(r) +va(r)),
because %(T) + %(r) — 0 and R(r)S(r) = 0 hold.

(4.6) and (4.7) mean vy (r) = 0 when v;(0) = 0. This shows that v(r) = vo(r) € E+(r), specially
(h)vy = v(1) € E+(h).
The continuity of II(h) and I1-*(h) is obvious. 1

Fix p; > 0 and define H(h,p1) = {h = (hy,---,hy) € RV ; Ej < hj < ﬁj + 1}, M(h,py) =
{E()P(z;h) ; 1 € R, h € H(h,p1)}. Then, from the construction of II(h), there exist a positive

constant Cy depending only on p; and independent of h with minh > h* for sufficiently large h* such
that for any h € H(h, p1)

|mmw,nﬁwmw5;mmnsa,

()|, [T (R) I(h)[lec < C1,

loon [0

hold, where || - ||o is an operator norm with respect to the sup-norm || - ||oc on R'.
Let A = L(h) and X“ be the space with the norm || - ||, defined by the fractional power A% of A
for w € [0,1). Hereafter, we fix w in 3 < w < 1 such that X is imbedded into BUY(RY)(ref. [19]),

where BU*(R') is the space consisting of uniformly continuous and bounded functions on R* up to
their k th order derivatives. R R

LEMMA 4.2. There exists a neighborhood U = U(h, p1) of M(h,p1) in X* such that any v € U
is represented by

forle R, h e H(ﬁ,pl) and w € EL(ﬁ)
Proof. Fixly € R, hg € H(h, p;) arbitrarily and put vy = Z(ly)P(-; hg). We will show the existence
of [, h and w € E*(h) near ly, hg and 0 for sufficiently small v € X such that

v+ vy =Z){P(,h) + II(h)w}.
Since II(h) is homeomorphic from E*(h) to EL(h), it suffices to show

Z(=1)(v + vo) — P(:;h) € E*(h).
This is equivalent to

0

(E(=D(v+wo) = P(h), ¢j(h) ) 2
= (v+vo—E()P(sh),EW)Pj(R) )12 (7 =0,1,---,N)

Hence, defining

V(Za h,’l)) = (< v+ Vo — E(I)P(v h)a E(l)(ﬁ;(h) >L2)j:0,1,~-,N € RN+17
14



we can apply the implicit function theorem to the map V. First, we note V (g, ho,0) = 0 holds. On
the other hand, Proposition 4.2 shows

(@8) (P.(z2h). 8}(h) ) s = 1+ O(3(h)),
(4.9 (o P o) ={ TG ) (=0

7=0,1,--- )N
J N
= (Z ki + 20(5(’1))]%)
i=1 i=1
Thus, we find a0 h) (lp, ho,0) = Vo + O(6(h)), a square matrix of N + 1 degree, where
1 0 0
11 0
Vo =
0
11 1

Since Vj is a lower triangular matrix and invertible,

o(l, h)
d(h) and the implicit function theorem shows there exist [ = I(v) and h = h(v) for small v such that

(lo, ho, 0) is invertible for sufficiently small

V(l(v), h(v),v) = 0.

We transform the equation (1.6) of w to that of (w,l, h) by

u(t,z) = E(){P(z;h) + I (h)w}

forl € R', h € H(h,p) and w € E*(h). Since Z/(l) = —E(l)% holds, we have

u, = IZ'(1){P(z; h) + T(h)w} + (1) (;L{P(z; h) + (h)w}h + H(’l)ﬂft)

==2(I) (z’aaz{P(z; h) + II(h)w} + %{P(z; h) 4+ I(h)w}h + H(h)wt>
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and

L(u) = LE{P(z; h) + L (h)w})
= Z()L(P(2: h) + L(R)w).

Hence, it follows that
_[%{p(z; h) + I(h)w} + 8%{}3(2; h) + (h)w}th + II(h)w; = L (P(z; h) + I(h)w)

and we have

(4.10) Q(h) [ii{P(z; h) + II(h)w} + %{P(z; h) + H(h)w}h]

= Q(h)L(P(z; h) + (h)w),

(4.11) 11~ (h)R(h) [-z’i{P(z; h) + TI(h)w) + a%{P(;;; h) + H(h)w}h] +w
— I (R)R(R)L(P (2 k) + L(R)w).
Let pp > 0 and Cy > 0 be constants such that if ||w),, < p2 and h € H(h, py), then
(412) (L(P(2:h) + TH(R)w) — £(P(=: k) — L(R)T(R)w] < Colu]

holds. We note here that py is taken to be independent of h and depending only on p;.
Put

W(h.p1,D1) = {w(") € C (H(h,p1): E*(R) N X*) ¢ [w(h)]lw < Did(R)}-

We determine D; later but suppose h* is large enough so as to D1d(h) < py for h € H(i\l,pl) with
minh > h*.
First, we consider (4.10). It follows that if |jw||, < D1d(h), then we have from (4.12)
P(z;h) +1(R)w), ¢ (h) )
L(P(z;h)) + L(R)II(h)w + O(5%), ¢; (k) ) 1
L(P(z;:h)), ¢5(h) )2 + (T(h)w, L* (h)$ (h) ) 2 + O(5%)
L(P(z;h)), ¢5(h) )2 + O(6%)
= Hj(h) + 0(52),

(4.13)

—

L(
(
(
(

where § = §(h). Here, we used the fact L*(h)¢j(h) = O((h)).
LEMMA 4.3.

Let TI(h)w = 62 {II(h)w} for w e X¥. Then,
z

IR)w] < Clwll.
holds. 9
Proof. Let v(r) be the solution of (4.5) with vy = w. We shall show av(r) is estimated at
1200 < .

- 0
Let v(r) = a—v(r). Differentiating the both sides of (4.5) by z, we have
2z

(;—: = S(r;h)v
16
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with v(0) = w,. Here,
0
S(r;h)v 6—S(T7h)v

== 3 Oy =Ry) (0, 50O )12 5 bu(O0))

M=

J 0

which is a bounded operator for v € X. Thus, we have from (4.14)

r)=w, + /07“ §(r; h)v(r)dr

~ 1 ~
I(h)w =v(1) = w, +/0 S(r; h)v(r)dr.

especially,

This gives the proof.

Since

Mz

Qh)v =) (v,¢j(h) )2 ¢;(h)

O

j=
for v € X, (4.10) yields from (4.8), (4.9), (4.13) and Lemma 4.3,

(4.15) I(1+0(s +Z:1+O Y = Hj(h) + O(6%) (j = 1,2,---, N),
k=1

(4.16) —I(14 0(8)) = Ho(h) + O(5?)

if w=wh) e W(fAL,pl,Dl), where § = d(h). These and (4.10) imply that there exist functions
H; = H(h,w) (j =0,1,---,N) such that

(4.17) [ = Hy(h,w) = —Hy(h) + O(6%(h)),
(4.18) h; = H;(h,w)
j-1(R) = Hj(h) + O(6*(h)) (j = 1,2,---, N).
Especially,
(4.19) I, hj = O(5(h))

hold for w € W (h, p1, D). Similarly, it follows from (4.11) and (4.12) that
(4.20) w; = A(h)w + G(h,w)
with ||G|| = O(8(h)) for h € H(h, p1,) and w € W (h, py, D), where
A(h) =TI (h)L(R)II(R),
G(h,w) =1I"'(R)R(h) [L(P(z; h)) + Ls(w, w)
(P h) + T(RYw) — S (P(:h) + (R} H |
Ly(w,w) = Ly(h, w)(w,w)
= L(P(zh) + T(R)w) — L(P(z; b)) — L(A)(h)w,
H = H(h,w)

- (ﬁ17ﬁ27"'7ﬁN)~
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LEMMA 4.4.
[A(h1)w — A(hg)w]| < Clhy — ha| - |w]|

holds for h; € H(h,py) (j =1,2) and w € {Hz(Rl)}n.
Proof. From the definition of A(h;), we have

A(hy)w — A(hg)w =TT (hy) L(h)II(hy)w — T (hy) L(ho)TI(hy)w
(4.21) =117 (hy) L(hy)TI(hg)w — T~ (hy) L(hy )T (hy)w
(4.22) +IT7 (hy) L(hy){TI(hy)w — T(hy)w}
(4.23) HIT7 (hy) L(hy)II(hy)w — TT (ho) L(ho)TI(hy)w

for w € {H2(R1)}n. We shall estimate (4.21), (4.22) and (4.23).
(4.23) is easily estimated by

(4.24) [1L(h1)v — L(h2)v|| = [|[F'(P(2; h1))v — F'(P(2; ha))v|
< Csup |F'(P(2;h1)) = F'(P(2: ha))| - |||

< Clhy — hy| - [Jv]|

becuase sup | P(z; h)|, sup |P.(z; h)| < C holds uniformly for any h € RY, where v = II(hy)w.

Next, we consider (4.22). Let v(r; h;) be the solution of (4.5) with v(0; h;) = w. By the definition
of II(h;) and v(0; h;) = II(h)w, we have

~ ~

(hy)w — [(hs)w = {I(h;)w — II(R)w} — {II(hs)w — I(h)w}
= {v(1;h1) —v(0;h1)} — {v(1;h2) — v(0; h2)}

:/0 C(i—’:(r;hl)dr—/0 %(T;hg)dr
1
:/0 {S(r; h1)v(r; hy) — S(r; he)v(r; ho)}dr.

Hence, it follows that
(4.25) [T (hy) L(ha){11(Ry)w — II(ho)w}|

<c / |L(R){S(r: ha)o(r: hy) — S(rs ha)yo(r: ho) Y dr
< c/o 1L(h)S(rs ha)o(rs ) — L(ha)S(r: ha)o(r: ha) | dr
1
‘o / |L(R1)S(rs ha){o(rs ha) — v(r: ho)} | dr
0
<c / |L(R)S(rs ha) — L(R)S(r: o) - (s )

1
+C/ | L(h1)S(r;he)| - [[v(r; h1) — v(r; ha)||dr
0
< Clhy — hs| - |Jw]|

~

for h; € H(h,p1) because L(h1)S(r;h) is a bounded operator on X depending smoothly on h €
H(fz,pl), r € [0, 1] and v(r; k) is also a function depending smoothly on h € H(fAL,pl), r e [0, 1].
Finally, we estimate (4.21). Define the operator II(r; h) by II(r; h)vy = v(r; k), where v(r; h) is
a solution of (4.5).
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PROPOSITION 4.3.

d T—1(0. — 111 .
% {H (’I“, h)UO} = -1II (’I“, h)S(T7 h‘)vO

holds for h € H(

,p1), Vo € X and r € [0, 1].
Proof. Let u(r) =11

1
II=*(r; h)vg. Then, we have

vy = ﬁ(r;h)u(r)

and therefore

= s hyu) + s )

“ @
= S(r )T hyu(r) + Ti(rs ) 22 (1)

0

~ d
— S(r;h)ve + Ti(r; ) == (r)
dr
holds. This implies the proof.

Similarly to the case of (4.22), we have from Proposition 4.3

Hil(hl)L(hl)'U — Hil(hg)L(hl)'v
= {II" ' (hy)L(h1)v — II"* (R) L(hy)v} + {117 (R) L(hy)v — 1"} (ho) L(h1)v}

-/ R ) Lo - / G o) Lo} e

~

:—/0 o (r; hl)S(r;hl)L(hl)'udr—i—/o ﬁ_l(T;hg)S(T;hg)L(hl)’l}dT‘,

where v = II(hs)w. Hence, it follows that
(4.26) I (hy) LRy o — 1T () L(ha o
1
< / I~ (r; 1) S(rs ha) L(ha) — 17 (13 ha) S (rs ho) L(ha ) ||dr |||
0

< Clh1 — ha| - [Jv|
< C|hy — hy| - [|wl]|

because the smooth dependence of II=!(r; h)S(r; h)L(h;) on the argument h.
(4.24), (4.25) and (4.26) show the proof.

REMARK 4.1. It is shown that
(4.27) [A(R)w — Aw|| < Clh — k| - ||w]|

for h € H(fAL,pl) and w € X¥ in quite a stimilar manner to this lemma but we use

w — L(h)w
+IT7 Y (h)L(h){II(h)w — w}
+L(h)w — L(h)w



Here, we note there exist C5 > 0 (independent of D;) and Cy = C4(D;) > 0 (dependent on Dy)
in (4.18) and (4.20) such that

(4.28) |H (h,w)| < C36(h),

(4.29) |H(h,w) = H(k,v)| < Cad(h){|h— k| + [w = vll.},

(4.30) IG(h, w)[| < C58(h){1 + (D1 + D})d(R)},

(4.31) IG(h, w) = Gk, v)|| < Co{d(R) + 5(k)}{|h — k| + [[w — ]}

~

hold for h, k € H(h,p;) and w, v € X¥ with |w|y, ||[v]e < Did(h). We extend d(h) for h ¢
H(h, p1) such that 6(h) < 6* = §(h*) holds for any h € R" and also extend H and G appropriately
to the outside of H(h, p;) such that (4.28) ~ (4.31) hold for any h, k € R".

‘We shall construct an attractive invariant manifold of
{ he = H(h,w),

(4.32) w, A(h)w + G(h, w)

for h € RY and w € W(ﬁ, p1, D1). Since the resolvent of A(h) satisfies

C

uniformly for h € H(h, py) on E*(h), we may assume A(h) is extended for h & H(h, py) such that
(4.33) holds for h € RY. We also assume A(h) is extended for h ¢ H(ﬁ,pl) such that Lemma 4.4
and (4.27) hold for h € RY.

Define 6(h, k) = 6(h) + d(k) for h, k € RY. Note that §(h, k) < 20* holds. Let

W (D1, Ds)
—{we C(RYEX(R) N X¥) ; |w(h)|. < Did(h),
|w(h) — w(k)||w < D20(h, k)|h — k| for h, ke RN}

for a positive constant Dy. For o € W(Dl, D), define h(t) = h(t;&,0) by the solution of

h: = H(h,o(h)),
(4.34) {h(O) _ el Ry

and define T'(¢,s) = T'(t, s; h(-)) by the evolution operator of
(4.35) w; = A(h(t))w.

LEMMA 4.5. There exist positive constants 6o, Cs and v, independent of Dy such that if h(t) €
CY(R; RY) satisfies |hy| < o, then | T(t,s; h(-)w|. < Csmax{(t — s)~* 1}~ E=9)||w]| holds for
w e E+(h).

Proof. (4.33), (4.27) and e.g. Theorem 7.4.2 of [19] directly give the proof. 1

Hereafter, we take h* large enough that C36* < ;.
For h(:) € C'(R; RY) with |h;| < C35(h(t)) < &, consider a bounded solution of

(4.36) wy = A(h(t))w + G(h(t), w), —00 < t < +00.

LEMMA 4.6. There exists a constant D1 such that a bounded solution of (4.36), say w(t; h(-)),
uniquely exists satisfying
lw(t; h(-))]lw < D1d(h(1)).
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Proof. Let v(t) be a function satisfying

lv(t)]lw < D16(h(t)), —00 <t < 400
and consider a bounded solution of
(4.37) w, = A(h(t))w + G(h(t), v(t)).

Solutions of (4.37) is represented as

w(t) = T(t, syw(s) + / T(t, )G (h(n), v(n))dn,

where T(t,s) = T(t, s; h(-)). Since ||w(t)]|, is bounded as t — —oo, w(t) satisfies
(4.38) w(t) = / t T(t, s)G(h(s),v(s))ds.

Let W (t;v(-)) be the right hand side of (4.38). Then we have from Lemma 4.5
(4.39) W (& v()

< [ Cs max{(t — s)™%, 1 e (=9 ||G(h(s), v(s)||ds
< [ Cs max{(t — s)™%,1}e =) C38(h(s)){1 + (D1 + D?)5(h(s))}ds
< /t Cmax{(t — s)™%, 1}e " =9)§(h(s))ds - {1 + (D1 4+ D?)6*}
= C/Oo max{s~*,1}e "*§(h(t — s))ds - {1 + (D, + D?)5*}
0
< c/ max{s~, 1}e "1 {e~M=W§(h(t — 5))}ds - {1 + (Dy + D?)5*}
0

<C / " max{s—, 1}e=5ds - 5(h(1){1 + (D1 + D2)5*}
0
< CS(h(t)){1 + (Dy + D?)5*}

for a positive constant v} with 0 < +/ < ~1. Here, we used the monotone decrement of e~ =71)s§(h,(t—
d

s)) with respect to s, which is due to d—é(h(t —5)) = O(0*(h(t — 5))) < 6(h(t — 5))O(6*). Hence, we
s

take D1 and h* so large that

C{1+ (D1 + D?)6*} < Dy
and we have
(4.40) [W(t;v()llw < D1d(h(t)).

Let W(D;) = {w e C (R; E+(h) ﬁX“’) i lw®)|lw < D16(h(t))}. Then, (4.40) shows W is a map

from W(Dl) into /W(Dl).
Now, we shall show W is a contraction on W (D;). We have from (4.38)

Wt w(-)) = Wt o())lw

< C[ IT(t, $){G(R(s),w(s)) = G(h(s),v(s))}|ds
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<C /_ max{(t — s)™%, 1}e =) G(h(s), w(s)) — G(h(s),v(s))|ds

<c / max{(t — 5), 1} )5(h(s))l|w(s) — v(s)||ds

<C /000 max{s~", 1}677{8{67(717%)56(’7’@ —5))}ds - Slip [w(t) —v(t)]|w
< Co(h(t)) sup w(t) —v(t)]w

< C8* sup ||[w(t) — v(t)]]o-
t

This shows W is a contraction on W(Dl) if h* is large enough, which completes the proof.

Fix D such that Lemma 4.6 holds.
Define

J(0)(§) = w(0;h(¢,0))
for ¢ € RN and 0 € W(Ds, D). Then,
(4.41) 17(0)(€)llw < D16(h(0;€,0)) = D16(£)

holds by the definition and Lemma 4.6. .
We shall estimate ||J(0)(&2) — J(0)(€1)|w for &, &1 € RY and o € W (D1, D).

LEMMA 4.7. If hy,hy € CY(R; RY) with |%hj| < O36(h; (1)) satisfy
|ho(t) — ha(t)] < Ce20 M
for positive constants ¢ and ~ys, then
w(t; ha(-) — w(t; hi())|lw < 6(ha(t), ha(t)CCe?>* 1
holds.

Proof. Let w;(t) = w(t; h;(-)) (j = 1,2). Since w; satisfy

;)= [ T(t5)Gy(5) w5(5)ds

—00

from (4.39), we have by using similar arguments to (4.39)
[wa(t) — w1 (t)]
< C[ IT(t, 5){G(ha(s), wa(s)) = Gha(s), wi(s))}|ds
< C[ max{(t — s)™“, 1}6J’1(t75)||é(h2(8), wa(s)) — é(hl(S)vwl(S))”ds
< C[ max{(t — s)7¥, 1}6Jﬂ(t75)5(h2(5), hi(s)){lha(s) — h1(s)| + ||wa(s) — w1 (s)|l. }ds
< Cd(hQ(t),hl(t))/t max{(t — s)~%, 1}e =512 sl

+C6(ha(t), hy (1)) [ max{(t — s)™%, 1 e 1) ||y (s) — w1 (s)||wds

< 05(h2(t)7h1(t))/ max{s™, 1}e~15¢e128 11—l g
0
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+C3(ha(t), ha(t)) / t max{(t — s) 7, 1}e 77117120 lslgs Sltlp{e_’yzé*lt‘ [wa(t) — wi(t)]}
< Co(ha(t), hl(t))g'e”‘s*‘tl /000 max{s™", 1}67(717"{25*)5‘&9
+C6(ha(t), hyi(t)) /000 max{s™*, 1}e 715729 It=sl g . Slip{e_’mé*‘t' [lw2(t) — w1 (t)||w}
< O6(ha(t), ha(8))e>* ¢ + Sl;fp(f”‘s*‘t'llwz(t) —wi(t)]w)}
for a positive constant 0 < v{ < 1. This yields
sup(e " Mjws (1) = w1 (1)} < C3(Ra(t), ha (){C + suple ™ M jws (1) — wi(B)]1)},
which completes the proof. I

) = h(t;fj,a) (] = ].,2) for é-j S RN and o € W(Dl,Dg). Let wj(t) = O'(h](t))
LEMMA 4.8. h;(t) (j = 1,2) defined above satisfy

|h2(t) _ hl(t)‘ < e6"6’4(14—26"D2)|t||€2 _ fll

Proof. Let hg(t) = ha(t) — hy(t). From (4.29), we have

d
“hs

i ha| < 0" Cu{lhs ()] + [|wa(t) = wi(B)]l}-

Since

|wa(t) — wi(t)]lw = [lo(h2(t)) — o(hi(t))]lw
< 26" Dslhs(t)|

holds, it follows that

d
’dthg < 5" Cy(1 + 26%Dy)|hs).

This gives the proof. ]
From Lemmas 4.7 and 4.8,
lw(t; ha()) = w(t; ki ()l < 6(Ra(t), ha (1)) C|és — Exfe” 10 +207 P21
holds. Therefore, we have

(4.42) [7(e)(&2) = J(0)(&1)lw = [[w(0; h2(-)) — w(0; h1(+))]]w
< 6(ha(t), h1(t))Cl& — &
< Daé(ha(t), hi(t))]€2 — &1

by taking Dy appropriately large. (4.41) and (4.42) imply that
(4.43) J(0) : W(Dy, Dy) — W(Dy, Dy).
We shall show J is a contraction map on W(Dl, D»). For given o1, o9 € W(Dl, Dy)and € € RV,

we let hj(t) = h(t;f,Uj) and ’l.UJ(t) = O'j(hj(t)) (] = 172)
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LEMMA 4.9.

1 x x
ho(t) — b ()] < _ 0" Ca(1426™ D2)|t|
ha(t) = ()] < 155z — e ,
holds, where ||| - ||| denotes ||| = sup ||o(&)|lw for o € W(Dl,Dg).
¢cRY

Proof. Let hs(t) = ha(t) — hi(t). Then, from (4.29), we have

(.4 kil < Cu6*{Iha] + aa(0) — wi(0)].}
= C46™{|h3] + [|o2(h2(t)) — o1 (h1(t))]]w}-

Here,

lo2(ha(t) = o1 (ha (D)l < llor(Ra(t)) = 01 (R (D) | + o2 (ha(8)) — o1 (R (1))l
< Dad(ha(t), b (D) ha(t) — ha(8)] + [l — |
< 205" s (t) — k()] + [llo — o1

holds. Substituting this to (4.44), we have

d * * *

£h3| S 045 (]. + 20 D2)|h3| + C45 |||0'2 - O'1|H.
This yields

[t] . .
Ihs(t)] < / eCat" (1520 D) 111=5) g C046% [l — o |
0

1 . .
= T3z, 0T =) lles = ol
# C18*(1428* Do) |t|
< 5 loe =l .
1
Lemmas 4.7 and 4.9 imply
26%C . .
lw(t; ha()) —wt; hi())|lw < H—TIH@ — 0'1|||eC46 (1+26* Ds)t|
This directly shows
(4.45) [J(2)(§) — J(01)(€)llw = lw(0; ha()) — w(0; A1 ()|l
26%C
< mm@ — ||

< C8"|[log = o]l

Hence, J is a contraction and there uniquely exists o € W(Dl, D») satisfying J(o) = 0.
Let M\(lAl, p) = {Z()[P(z;h) +1I(h)G(h)]; I € R', h € H(ﬁ,pl)}. Then, from the construction
of &, we can show easily that M. (h, p1) is positively invariant with respect to the flow of (1.6) as long
as h(t) € H(h, pl) where h(t) is a solution of (4.34) with ¢ = 0. Smoothness and an exponential

attractlmty of ./\/l( ,p1) together with the existence of aymptotic phase are also shown in quite a
similar manner to Section 9 of [19]. Here, we specially note that the attractivity is determined only by

the estimate of semigroup e —A(h)t Thig implies that the set M( ,p1) has an attractivity uniformly
for h with sufficiently large minh > h*. That i is, we have the following result now.
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THEOREM 4.1. There exist positive constants h*, p1, v3, m and Mz such that for any h with
minh > h* and any u(0, ) with dist{u(0,-), M(h,p1)} < m, there exist functions l(t) and h(t)
which are the solutions of (4.17), (4.18) with w = o (h) such that

lu(t. ) = EU{P(z; b() + TL(R(1D))F (1))} < Mse™* dist{u(0,), M(h, p1)}

holds as long as h(t) € H(h, p1), where u(t, z) is a solution of (1.6).

By using this theorem, we shall show Theorems 2.1 and 2.2.

4.2. Proof of Thorem 2.1. Let p3 = %pl. For any k = (k1,ke, -+, kn) € Zﬁ, define
hj(k) = h* + k;ps and h(k) = (hy(k), ha(k), - - -, hy(k)), where Z, = {0,1,---}. Then, (h*,00)N =
Ugcz~ H(R(k), p1) holds. Theorem 4.1 shows that there exist, say o = o(-; k), and M(h(k), p1) for

+
any k € Z such that the solution u(t,-) of (1.6) satisfies

—~ o~

lu(t,) = EUEN{P(; () + T(A(1))T(R(t); k) }Hlw < Mae™ ' dist{u(0,-), M(h, p1)},
and therefore,

[u(t, ) = ZO)PC; ()|

< Mze™""dist{u(0, ), @@pl)} HIZA@)I(R ()T (h(t); F)l|

< Mye "t dist{u(0, ), M(h, p1)} + C3(h(t))
< Co(h(t))

holds for sufficiently large t > 0 because &(-;k) € W(Dy,Ds). Since we may assume C(h(t)) <
C6* < my, the solution u(t,-) is in an attractive region of M\(i\L(k), p1) for a certain k. That is, there
exists k € H(ﬁ(kz)7 p1) for any w(t,-) with h(t) € (h*,00)" such that u(t, -) stays close to /(/l\(ﬁ(k:)7 01)-
This completes the proof.

4.3. Proof of Thorem 2.2. Let h be the equilibrium stated in the theorem. Since min b > h*
is satisfied, there exist a k € (h*,00)™ such that h € H(h(k), p1) and there exist a function a(h) =
o (h; k) which gives an attractive invariant set of (4.32) with w = &(h) by Theorem 4.1. As

H(h,5(h)) = H(h) + O(8*(h))
holds from (4.18), it is easily shown by the implicit function theorem that ﬁ(h,ﬁ(h)) has a stable
equilibrium k' satisfying
h' =h+O((h)).
Defining IT = Hy(h',5(h")) and P(-) = P(-, h") + II(R"7(R1), we sce
2T P(-) = P(z —1Tt)
gives the stable traveling wave pulse solution stated in the statement.

Unstable traveling wave pulse solution is constructed in quite a similar manner.

4.4. Proofs of theorems when D has zero elements. In this subsection, we use same nota-
tions and symbols as those in previous subsections as long as they are not specially noticed.

When D includes zero in the elements, the operator L(h) is not sectorial and the fractional
powered space X imbedded into BU'(R) is not defined, and hence, the transformation of (4.10) and
(4.11) is not applicable. We reconstruct a new map instead of II(h).

Let the base space X = BU°(R') with sup-norm and let an operator K (h) be



for v € X. Fix [ € R" arbitrarily and define a map A(l, k) by A(l,h)vy = v(l), where v(r) is a
solution of

W= EEmE(,
() = wvyeX.

Let TI(I, h) = A(l, h)TI(h) and E- (I, h) = Z(1)E*(h). Then, it is easiy shown that the map II(l, )
is homeomorphic from E(I,h) to E+(I,h) by (4.3) and (4.4). Moreover, it is also shown by the
construction that ﬁ(l, h) is a bounded operator on X up to their first derivatives with respect to [
and h. Hence, the transformation

v =E(1)P(z; h) + II(I, h)w

for (I,h) € H(I,h,p) and w € EX(I,h), where H(I,h,p1) = {(I,h) € RN*': | <1 < i+ py, h €
(

I,h
H(h, p1)} yields the equations of (I, h,w) as (4.17), (4.18) an

4.20)
(4.46) [ = Hy(l,h,w) = —Hy(h) + O(5?),
(4.47) h.j = ﬁj(lv h, w)
= Hj_1(h) — H;j(h) + O(5°),
(4.48) w, = A(l, h)w + G(I, h, w)

for w € E+(I,h) with ||w|ls = O(8), where A(l,h) = II='(l,h)E(I)L(R)II(I,h) and so on. Then,
quite a similar way to the previous subsections, we can show the existence of &(I,h) € E+(l,h) and
a positively locally invariant attractive manifold given by

M (L., p1) = {E()P(zs k) + T )G (L ): (1R € H(E R pr)}
such that ||g(1, h)||cc < Cd(h) and
lut, ) = {2 P(z: k) + (L R)G (L, )} oo < Ce™ " dist{u(0,-), M(L, h, p1)}

holds as long as (I, k) € H(I, h, p1) if u(0,-) is sufficiently close to J\/Z(IA7 h,p1). In the proof of these
results, we used the same estimate for the operator A(l, h) as in Lemma 4.5 with w = 0 though A
generates only the C? senigroup. In fact, the estimate in Lemma 4.5 with w = 0 is obtained only
from the result in Lemma 4.4 and the exponential decay of e!4 with respect to ¢ > 0, which has been
extensively studied in related works on the stabiliy of the 1-pulse solution for the FitzHugh-Nagumo
systems (e.g. [5] ~ [8], [17],[30] ).

The rest of the proof is the same as subsection 4.2.

4.5. Proof of Thorem 2.3. From the assumptions (2.5), (2.6) on P(z), constants «, 8 and
vectors a*t satisfy

(4.49) o’Da’ + faa™ + F'(0)a™ =0,
(4.50) B?*Da~ —60Ba” + F'(0)a” = 0.

Hence, it is easily seen that there exist non zero eigenvectors b* satisfying

(4.51) a®’Db™ +6ab” +'F'(0)b” =0,

(4.52) B2DbT —0pbT +1F'(0)bT = 0.

(4.51) and (4.52) give the asymptotic form of ¢* as * — Foo, respectively, which shows (2.7) and
(2.8) hold.

We fix j* (1 < j* < N — 1) arbitrarily and show (2.9) for j = j*. For j =0 and N, we can prove
(2.10), (2.11) in quite a similar way and omit the proof.
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Let A, = min h and

Defining I = (—oo, —hj+ + p] U [hj»41 — p, 00) and Iy = (—hj« + p, hj=41 — p), we consider
Hyo(h) = [ (L(P(+ 25:h)). 87 (2) ) e
— [Pt )6 @)
IHUly
LEMMA 4.10.

<O (e ) b

| PGt i) 6 (2) ) e

I

for a constant y4 > 0.
Proof.

Let Iy = I; ULy, where I} = (=00, —hj« +p] and I = [hj«11 — p, o0). We divide I; moreover
into I7 = I, " U I, where I;,'F = (=00, —hj-] and I; "% = (=hj-, —hj +p). On I;°", ¢*(2) has
the estimate (2.8) and we have

(4.54)

/ (L(P(z +zj+; ), ¢"(2) ) dz

o

<coth) [ 167Nz

< C§(h)e " (1+0(e~ "))
< O8(h)e i,

On the other hand, on If’R,

|P(z+ zj«; h) — P(z + hj~)

<C (6—a(z+hj*+hj*,1) n egz)
and for j # j* — 1,
|P(Z + Zjx — Zj)| <(C (e_a(z+hj*+hj*—1) + eﬁz)

hold. Hence, we have for z € Il_’R,

L(P(z+ zj=;h)) = L(P(z + zj=; h)) — L(P(z+ zj~ — zj))

1= 104>

=F(P(z+zj~;h)) — Y F(P(z+ 2+ — 2j))

=0
N
= F(P(z+ hj»))+ F'(P(z + h;+)) Z P(z+ zj» — z;)
A3 -1
N
PP+ b))~ S POP(:+ 20— 2)
i1

+0 (e—2a(z+hj*+h]~*,1) + e2[32>
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= {F"(P(z + hy-) 0)} Z P(z + zj = 2j)

J#j*—1
+O( —20(z+hjx+hjx_q) _1_6252)

=0 (e—a(z+hj*+hj>«_1) + eﬁz) .

Thus, it follows that

(4.55)

/ (L(P(+ 203 1)), 67 (2) ) d=

< / —a(z-{-h]-*-i-hj*,l) + 6’82) . |¢*(z)| dz

< / (eeterhsthe ) %) e (14 0(7)) dz
<C ( —a(hythye_1) 4 e—(a+B)(hj*—u))

— Ce —ahjx ('Ulefahj*,l + 6fﬁhj*+(04+5)l‘«)

< Ce OthJ* { B hmine_ahj*—l + 6_;5hnnn}

- a+f

S CG ahj*ef'y5hmm

for a constant 5 > 0 because hpin < hj-—1 and (4.53). Since 6(h) < Ce=" min holds for v* =

min{a, 8}, (4.54) and (4.55) yield

(4.56) < Ce=hi* g=6hmin

| e zim). @) d:

1

for a constant g > 0.
Similarly, it is shown that

(4.57) < CePhix g=7hmin

[ PGt ). ) a:

1

for a constant vy; > 0.
(4.56) and (4.57) complete the proof.

LEMMA 4.11.

= (Mpe= i 4+ Mge=Phi=+1) {1 4+ O (e hmin
B

/ (L(P(: + 21 ), 67 (2) ) de

Iy

for a constant ~g > 0.
Proof.
From assumptions (2.5) and (2.6),

7 =1

(4.58) P(Z-i—Zj ; + Z e_O/(Z+Z *—2j) ++ Z (2— Zj*+zj)a_
Jj=j*+1
+O(e (06+'Y)(Z+hj*) + 6(5+7)(Z h]*+1))
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holds on I. We let the right hand side of (4.58) be P(z) + PL(z) + P£(z) + g(z). Then, we have

—~

(4.59) L(P(z+ zj+;h)) = L(P(z + zj=; h)) — L(P(z+ zj» — 2;))

M-

Il
=]

J

M=

= F(P(z + zj=;h)) — F(P(z + zj+ — z;))

7=0
= F(P(2)) + F'(P(2))(P"(2) + P(2) + g(2))
—{F(P(2)) + F'(0)(P"(2) + P"(2) + g(2))}
+O( —2a(z+hjx )+€26(2_h-7*+1))
= {F'(P(2)) = F'(0)}(P"(2) + P"(2)) + g(2).

Here, we assumed v < v* and wrote O(g(2)) by g(z2) again.
It is easily seen that

(4.60)

/ (9(2),¢"(2) ) dz| < C (e7" 4 e7Mimtr) gm0k

I

for a constant yg > 0.
Now, we shall calculate

(4.61) /12 ({F'(P(2)) = F'(0)}(P"(2) + PT(2)), ¢" () ) dz.
Substituting the definitions of P¥(z) and P%(z) into (4.61), we have
(4.62) /12 ({F'(P(2)) = F'(0)}(P"(2) + P(2)), ¢" () ) d=
- M, ei?hf* (1+ O(emhm ]);]:Jii’ “Phire (14 O(e Phmin))
= (Mle " + M} *ﬁ’%*ﬂ) {1+O e hmm)},

where
M= [ e (U PE) - FOyat 6 (e) ) d
Mi= [ @) - Foa 7)) d:
PROPOSITION 4.4.

(4.63) S Ce_"fl()hwn'in’

/1 e ({F/(P(2)) - F'(0)}a’, ¢"(2) ) dz

(4.64) < Ce—’hohmm

/ &5 ( {F'(P(2) — F'(0)}a~, " (2) ) dz

I

hold for a constant 19 > 0.
Proof.
We shall prove (4.63). On I7, P(z) and ¢*(z) have estimates (2.6) and (2.8), respectively. Hence,

[({F'(P(2)) - F'(0)}a™, ¢"(2) )| < Ce* - e
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holds and therefore, we have

/, 5% ({F'(P(2)) — F'(0)}a™, " (2) ) d

—hjx+p
/ e . e,@z . eY% dz

o0

<C

< 065(*’7@* +p)

< Ce—'hohmin .

[({F'(P(2)) — F'(0)}a*, 9" (2) )| is estimated similarly on I;” and (4.63) is proved.
(4.64) is shown in quite a same manner.

Propositon 4.4 implies that

(4.65) M= [T (PP - PO () s+ 0 (e,

(4.66) My = [ PG~ F0))an 67(2) ) de+ O (e ).
PROPOSITION 4.5.

(4.67) Mo = [ e PE) - F0)a", 67 () ) d

(1.69) My = [ FPE) - FO)a o)) d:

hold.

Proof.

First, we will consider (4.67). Since ¢*(z) and a* satisfy L*(h)¢™ = 0 and (4.49), we have

(F'(P(2))a", ¢"( )) (@™, F'(P(2))¢"(2) )
—(a",Do., + 04 ),
—(a*Da* 4 faa™, 9 (2) )
—(a’,a’D¢* +bap* ).

( F’(O)a+,¢*(2) >

Hence, M, is
oo

(4.69) M= [ e (at aPDg" 4 bag” - D~ 091 ) ds
—o0

We calculate each term of the right hand side of (4.69). Note that (2.8) and
¢1(z) = ae™® (b7 + O(e'yz))

hold as z — —oo. Then by integration by parts, we see

(4.70) / T 0% (at D ) d
— [efaz < a+’D¢z >Tiooo +a/oo Pz < CL+,D¢2 >dZ
=—a(a",Db” )+ale *(a’,Do" >]icoo +a? /00 e”* (at,D¢* )dz

= 2a({at,Db” )+a2/ e (at,D¢" )dz
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Similarly,

(4.71) / e (at, ¢l Vdz=—(a",b” )+ a/ e”“(at, " )dz

holds. Substituting (4.70) and (4.71) into (4.69), we obtain (4.67).
We can prove (4.68) in quite a similar way. 1
(4.59), (4.60), (4.62) and (4.65) - (4.68) give the proof of this lemma. 1

Lemmas 4.10 and 4.11 show (2.9) .

5. The proofs of Propositions 4.1 and 4.2.

Throughout this section, we assume minh is taken sufficiently large and hence §(h) is small
enough.

Let

Lj’U =Dv,, — v, + F/(P(Z - Zj))v7

Lv = Dv,. — v, + F'(0)v

for v € {H?*(R")}", where z; = Zi:l hi (j = 1,2,---,N) and zy = 0 as introduced in the top
part of Section 2. Note that each L; has simple zero eigenvalue together with the eigenfunction
P.(z — z;). Now, we define a set of cut-off functions {x;(z); j =0,1,---, N} such that 0 < x;(z) <1,

Zj‘vzo xj(2) =1 and

(2) = 1, ZEQ;'»Z(Zj—%hj+172j+%hj+1—1)7
XV =00, 292 = (—o0,27 — $hy — 1) U (2 + Shjsr +1,00)

for j=1,2,---,N —1 and

, z2€ Z(—OO,Zo-‘v-%hq—l),
, z2€Q8 = (20+%hj+1+17oo),

1
1, 2e :(zN—%hN—i-l,oo),

() = { 0, z2€Q% = (00,28 — shy —1).

LEMMA 5.1. The spectrum X(L(h)) of L(h) consists of sets ¥1UXo such that X1 C {\ € C; |A] <
C/0(h)} and o C {\ € C; R\ < —p4} for positive constants C' and p4.
Proof. Define the operator D(\) = Z;V:() xj(A = L;)7!, and let w = DOA)f, u; = (A= L;)"'f
for A € p(L) and f € X, where p(L) is the resolvent set of L, i.e. p(L) = C\X(L). Note that
S(L;) = S(L) for j =0,1,--+, N.

First, we consider (A — L(h)) in L*(Q}). For z € O}, L(h) is given by

L(h) = L; + B,

where B; = Bj(z;h) = F'(P(2;h)) — F'(P(z — 2;)) is a matrix operator with |B;| < O(e=*(=%-1) 4
ePz=711)) < O(e 2% 4 e~ 2Phi+1) < O(V/). Since & = u; on Qi, we have

(5.1) (A= L(h))u = (A = L(h))u;
= (A= Lj)u; + Bju;
= f+ Bju,
~ f+ B
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Let Qf = (zj—3hj,z;—Lh;) and let Qé’. = (zj— h;—2,zj— 2h;+2). We shall consider (A\—L(h))
in LQ(QE?). Since P(z; h) = O(e=*=2-1) 4 P20 | P(z;: k)| < O(e™ 2905 4~ 281) < O(v/6) holds
for z € Q? and |P(z; h)| < O(+/) holds for z € Q9. Hence, L(h) is expressed by L(h) = L+ B, where
B= E(az) = F'(P(z;h)) — F’(0) with the estimate |§(m)| < O(V/$) on Q3.

On the ohter hand, L are also represented by

L = E + B\k
with | By (z)| < O(¥/3) on Q% and therefore
(5.2) (A — Lyuy, — Byuy = f

hold for k = j — 1, j, where By, = By(x) = F'(P(z — 2)) — F'(0). Since all the spectra of L is in the
left hand side of imaginary axis by the assumption H1), we may assume (A — E) is invertible in X for
A € C with R\ > —pg. Let % = (A — L)~ f. Since ug (k= j — 1, j) satisfy (5.2) on Q% with small
O(+/3) purturbations By, and wy, are bounded on Q%, we have

(5:3) lwr = @ll 1 ey < OVO) (@] + [lue] + all)-
Let gr = uy, — . By (5.2), (5.3), it follows on Q) that

(5.4) (A—L(h)a=(\—L-Bu
= (A= L)@+ xj-19,-1 + x;9;) — Bu
=f+(A—L)(xj-19j-1 + x;9;) — Bu
=f+Rj_1uj_1 + Rju; + Ru + Ru
for certain bounded operators Ry, R and R in LQ(Q?) with the norms estimated at O(V/6).
(5.1) and (5.4) show that
(5.5) (A—L(h)a = f+ R;j_ju;_1 + Rju; + Rt + Ru
= fH+ R\ = L)+ Ry = L) f 4+ RO = D)7 f + RDOV
holds in X. Here, we indetify all operators such as R; defined on LQ(Q?) as bounded operators
extended on X with the norms O(+/8). Since ||(A — Li) || < < and |(A = L)Y < < hold for

A R
A € p(L) and a constant C' > 0, it follows that

Csv/6
RY

(5.6) 1Rx(\ = Zi) I, RO = L)~ MI, [IRDOV)] <

for a constant Cs > 0, which means Id + R;_1(A — L;_1)"* 4+ R;(A— L;)* + R(A — L)~ + RD(\)
is invertible and bounded if |\| > 8C5+v/d. This yields that (A — L(h)) is invertible and the inverse is
given by

(5.7) (A= L(R)) " = DON{Id+R; 1(A—L; 1) "+ R;(A—L;) ' + RA— L)' + RD(A\)} !

for A € p(L) with |\ > 8C5+v/d and R\ > —p, for a constant py > 0.
1

Let T be a closed circle surrounding ¥ in the region {A € C; RX > —p4}. Then, the projection
Q = Q(h) from X to E(h) is given by

Qh) = - / (A— L(h)"ax,

T o
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where i = v/—1 and E(h) is the eigenspace corresponding to the spectral set X;. Now, we may take
I'={X e C; |\ = ps} for a constant ps > 0.
Let @; be the projection from X to KerL; = span{P.(z — z;)}, that is,

Qju=(u, ¢ (- — 2;) )2 Po(- — zj),

and define @ Z] OQJ Let Q be the projection operator from X to span{P,(z — z;); j =

(), 1,--+, N} such that Q Q +o0(1) as minh — co. In fact, we can easily construct such a projection
Q satisfying Q = Q + O(V5).
LEMMA 5.2.

1Q(R) - Qll = O(V5)

holds.
~ > ~ 4C5v/6 4056 4
Proof. OnT, |Rj_1(A—Lj—1) '+ Rj(A—L;) "'+ R(A\—L)"'+RD(\)| < Cf;\{ < C;\[ < O(V5)
5
holds by (5.6). Hence, {Id+ R;—1(A—L;j_1) '+ R;(A—L;)~* +R(A-L)" L+ RD(\)} ! is expanded
as

{Id+ R; s(A—=L; 1) '+ R(A=L;) '+ RA—L) '+ RD(\)} ' = Id+ G
with ||G|| < O(V/9), and from (5.7)
(5.8) (A= L(h))"' = DI\ (Id + G)
holds for A € T. X
Let f € C5°(82;). Since D(A) = (A — L;)~! on Qf and Q; = 57 /F()\ — L;)"'d), we have

=5 [(O= L) T+ G f )

:<qu+Gju7f>L27

(Qh)u, f )12

1 4 . . .
where G; = 2— (A — L;)"1Gd\ = O(V/5). Since f is arbitrary,

(5.9) Qh)=Q; +G;

holds in LQ(Q;)
Next, consider Q(h) in L?(€}). Let f € C5°(Q5). Then, it follows

1
" 2mi r

<Q( )U f> <D()‘)(Id+G)U,f>L2
m/Z WO~ L) I+ G ) 0
2m/z (A—=Lj) “HId+ G, XiF )2 dA
= Z< (Q; +C)u i f ) pa
=0

N
= (> x(Q+Gju, f )
j=0
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This shows

7=0
and specially, shows
(5.10) Q(h) = O(V5)
in L2 (Qé’)
Q satisfies the same estimates as (5.9) and (5.10), so that the lemma is proved 1

Lemma 5.2 implies that the spaces E(h) = Q(h)X and QX = span{P,(z — z;); j=0,1,---,N}
are homeomorphic each other and hence dim E(h) = N + 1 holds.

Let a projection R(h) be Id — Q(h) and E+(h) = R(h)X

LEMMA 5.3.

IE(R) o gyl < ©

holds uniformly for h with suﬂiciently large min h.

Proof. Let f(\) = {( (A — L(h))"'u,v ). for w € E+(h) and v € X. Then, f()\) is holomorphic
funciton of A € D[] = {\ € C; |\| < ps} because L(h) is invertible on the space E+(h). Since f()\)
has an estimate

[FN < |/\|IIUH ]l

by (5.7) for a constant C7 > 0, |f(A\)| < g||u|| - ||v]| holds on I'. Therefore, the maximum principle
P5

for the holomorphic functions yields

C

IF] < =l - [lo]

P5

for any A € D[I'] and specially for A = 0, which give the proof. ]
Since L(h)P,(z — z;) = O(6) hold, we have L(h)R(h)P,(- — z;) = O(4). Lemma 5.3 yields
(5.11) R(h)P.(- — zj) = O(9).
Let 9, = Q(h)P.(- — zj). Then, 4, € E(h) and we see
Y= P.(- = zj) = R(h)P.(- — z;) = P:(- — ;) + O(3)
by (5.11). Since v, - - -, ¥ 5 are obviously linearly independent and dim E'(h) = N + 1, these give the
basis of E(h), that is,
E(h) = span{t,--- Py}

Thus, we know 3; C {A € C; |A| < €4} for a constant C' > 0 because Q(h); = O(9).
For the adjoint operator L*(h), quite a similar properties to L(h) hold. That is, there exist

{¢g, -+, PN} such that ¢* = ¢ (- — z;) + O(9) and E*(h) = span{¢y,---,¢n}. Since

[ 1+06) (j=k),
<¢ja¢k )p2 = { 0(9) (; # k),

we can easily construct {¢y, - -, ¢y} in Propotitions 4.1 and 4.2 by slightly modifying {4, -, ¥y}
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6. Discussions and extensions.

In this section, we will state several extensions of the results of this paper.

First, we would like to mention that the method of proofs developed in this paper can be easily
extended to higher dimensional problems. In fact, we will show the repulsiveness of the spike solutions
for the Gierer-Meinhardt models on two dimensional space in the forthcoming paper [14].

On the other hand, the idea based on pulse interactions contributes powerfully to analyze various
transient behaviors. For example, we will see in the forthcoming papars [10], [11] that the approach
of weakly interacting pulses stated in this paper is very useful to analyze the self-replicating behaviors
appearing in the Gray-Scott model and/or the reflection of traveling pulses in some reaction-diffuision
systems.

Finally, we emphasize that our problem (1.3) in this paper is easily extended to the problem with
small perturbations like

(6.1) U = Dug, + F(u) + eg(u, uy)

for small e. The problem of this type includes many important problems such as the bifurcation
problems of homoclinic and/or heteroclinic orbits. Let us only consider the problems related to
heteroclinic orbits here. Suppose the equation (6.1) with e = 0 has a stable 1-front solution, say P(z),
which satisfies § = 0 and P(z) — e~ ®*la® + P* as in Section 2.2. P(z) is a heteroclinic solution for
the unperturbed equation. Then, the solution u(t,z) of (6.1) remains close to P(z — 1) and

[=—e(g(P(x—1),Pu(x—1),¢"(x—1) ).+ O()
= —€ < g(P(x),Pz@?)), (Z)*(.T) >L2 + 0(62)
= —eC + O(e%)

holds for the constant C = ( g(P(z), Py(x)), " (x) ), since g includes no space variable z. This is
easily proved in quite a similar way to this paper. Thus, we can know what kind of traveling front
bifurcates by the perturbation eg.

The bifurcation of homoclinic solutions is also dealt with similarly. Let us consider the solution
(6.1) with the initial function wg(x) close to P(x — lp) + P(—x + lo + hg) — P~ for sufficiently large
ho. Then we can show that the solution w(t, ) remains close to P(z —[(t)) + P(—xz +I(t) + h(t)) and

(6.2) [=—Mte " —eC +0(6% + €2),
(6.3) h=2M*e " £ 2¢C + 08 + ¢2)

hold, where M is the constant stated in Theorem 2.5. Then, we can know directly from (6.3) that
when M > 0(< 0) and C < 0(> 0), (6.3) has one (un)stable equilibrium, which means the existence
of (un)stable pulse solution corresponding to the homoclinic orbit with respect to P~. Thus, we find
the stability of bifurcating traveling pulse solution crucially depends on the repulsiveness (M ™ > 0)
or attractivity (M* < 0) of pulses.

We have found that the approach of weakly interacting pulses stated in this paper is very effective
also to the study of bifurcation problems for homoclinic orbits in ODEs. In this field, there have been
a lot of important works from the dynamical system point of view ([23] and see the references). For
this research, the relation between the theories for dynamical systems in ODE and the method in this
paper is left as an important problem to be clarified.
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