PA01

Galβ(1-4)Fuc 固定化アフィニティカラムの作成及びガレクチン結合能の検討

○山田誠、西山和沙、武内智幸、笠井健一、夏井孝昭、高橋秀依
帝京大・薬

【目的】ガレクチンは動物レクチンの一種であり、我々は今までに、線虫ガレクチンである LEC
-6 が、D-ガラクトースと L-フコースが 1→4 結合した二糖 [Galβ(1→4)Fuc] を強く認識すること
to を明らかにした 1)。そこで、本研究では合成した二糖を担体とした糖鎖固定化カラムの作成を
目指した。これまでの糖鎖固定化カラムは、線虫等の動物から抽出した多種の糖鎖を固定化した
ものである。一方、本研究における化学的に合成された単一の糖鎖を固定化させたカラムの作成
は初めての試みであり、糖鎖を認識するタンパク質の探索に役立つと思われる。

【方法】カラムに固定化するため、末端にアミノ基を有するマンニトール由来のリンカーやを
Galβ(1→4)Fuc に導入し化合物 A を合成した。続いて、市販のカップリングカラムに A を連結さ
せて、アフィニティクロマトグラフィーを検討する。

1) T. Takeuchi et al., Glycobiology, 2009, in press.

PA02

ECD-FL デュアル検出を用いた HPLC の選択性および感度の向上(2)

○片山昌雄1、石川博通2、兼子智3、松本隆司3、松田光弘1

1) 明治薬大・生体機能分析、2) 東京大学筑波総合病院・放射線、3) 同・産婦

【目的】患者らは先に高速液体グラフフ(HPLC)の選択性および検出感度の向上を目的とし
た、電気化学検出器(ECD)および蛍光検出器(FL)によるデュアル検出法を報告した。これに
より抗 HIV 剤(zidovudine, didanosine 等)の高感度検出およびデュアル検出による定性能力の向
上が得られた。FL では、薬物の構造由来する蛍光の検出と ECD ではアルコール性水
酸基の反応により検出を行った。今回このデュアル検出 HPLC を用いて、taxotere、estracyt、
cyclosporine 等の抗がん剤および免疫抑制剤について検討を行った。HPLC 装置：島津
LC-10Avp ポンプ、LC-10A コントローラー、LC-10 オートサンプラーハー、LC-10 カラムオーギ
プ、Shodex HE-4E ODP2 カラム (4.6 x 250 mm)，検出器：GL サイエンス ED-10 pulse ECD
検出器(印加電圧 2000mV) および島津 RF-535 蛍光検出器(ex275nm x em315nm)，サンプル
注入量 10 μl 1試料溶液：各薬品 1mg を CH3CN：水＝1:1 で 1000μg/ml として用いた。

【結果および考察】前法で安定な結果を得た CapcellPak ODS SG120 (4.6 x 250mm) カラム
ー CH3CN 系移動相（pH3-10）に加え、今回、移動相 pH が 3-12 の範囲で使用できるポリマー
計の Shodex HE-4E ODP2 および Asahipak ODP カラムについても検討を行った。この結果、
estracyt では pH3 付近でポリマー系カラム (Shodex および Asahipak) の双方でシャープなビー
ックが得られた。その他の抗がん剤は pH9 付近でポリマー系カラムによりシャープなピー
クが得られた。各抗がん剤および免疫抑制剤の検出限界は 50-2000 ng/ml (ECD) および
200-5000 pg/ml (FL) であり、UV 検出に比較し高感度化した。さらに、ECD および FL に
より定性能力の大幅な向上が見られた。変動係数についても 5%前後の良好な値が得られた。